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A B S T R A C T

Cloud Service Providers (CSPs) allow data owners to migrate their data to resource-rich and powerful cloud
servers and provide access to this data by individual users. Some of this data may be highly sensitive and
important and CSPs cannot always be trusted to provide secure access. It is also important for end users
to protect their identities against malicious authorities and providers, when they access services and data.
Attribute-Based Encryption (ABE) is an end-to-end public key encryption mechanism, which provides secure
and reliable fine-grained access control over encrypted data using defined policies and constraints. Since, in
ABE, users are identified by their attributes and not by their identities, collecting and analyzing attributes
may reveal their identities and violate their anonymity. Towards this end, we define a new anonymity model
in the context of ABE. We analyze several existing anonymous ABE schemes and identify their vulnerabilities
in user authorization and user anonymity protection. Subsequently, we propose a Privacy-Preserving Access
Control Scheme (PACS), which supports multi-authority, anonymizes user identity, and is immune against users
collusion attacks, authorities collusion attacks and chosen plaintext attacks. We also propose an extension of
PACS, called Statistical Privacy-Preserving Access Control Scheme (SPACS), which supports statistical anonymity
even if malicious authorities and providers statistically analyze the attributes. Lastly, we show that the
efficiency of our scheme is comparable to other existing schemes. Our analysis show that SPACS can
successfully protect against Collision Attacks and Chosen Plaintext Attacks.

1. Introduction

Cloud computing has emerged as a promising technology that makes
use of on-demand and scalable computing resources and reduces the
operational costs of individual users and enterprises. It enhances collab-
oration, agility and scalability, and provides a global computing model
over the Internet infrastructure. However, because of the challenges
associated with security and privacy, there is a widespread concern in
using this type of technology. Secure data protection and authorized
access provision are some of these challenges whose violation can cause
unauthorized use of resources and services [1,2].

Attribute-Based Encryption (ABE) is a cryptographic technique that
facilitates access decisions based on attributes and policies while main-
taining encryption. It empowers data owners to define access policies
and encrypt data accordingly, enabling fine-grained access control. One
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prominent form of ABE is Ciphertext Policy ABE (CP-ABE), which allows
encrypted data to be decrypted only by users possessing the requisite
set of attributes. This verification is typically managed by either a single
trusted authority or multiple authorities, each responsible for a subset
of attributes [3–8]. The attributes associated with users and access
policies embedded in ciphertexts determine access privileges, making
ABE suitable for large-scale applications [9].

Security and privacy are important for the data content stored in
the cloud. The privacy protection of users and preservation of their
anonymity against malicious authorities and providers is often needed.
In some applications, such as e-health, there may be some attributes
containing sensitive and private information like types of diseases
that must be kept secret from malicious authorities and Cloud Service
Providers (CSPs) [10,11]. Moreover, malicious authorities and providers
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may combine a subset of users’ attributes and utilize this combination
to re-identify users with a high degree of probability. For example,
1990 U.S. Census summary data shows that 87% of the population in
the United States had reported attributes that likely made them unique
based only on 5-digit ZIP code, gender and date of birth [12].

Protecting critical and sensitive information of users can be done
either by (1) anonymizing attributes containing critical and sensitive
information or (2) anonymizing the combination of attributes con-
taining users’ individual-specific information, which may be used to
re-identify them. Such combination of attributes is called the quasi-
identifier of users, which can be used to re-identify them [13,14]. More
specifically, in ABE, when a user sends his request to have access to a
ciphertext encrypted and stored in the cloud, the adversary, with the
help of malicious CSPs, can get the specific sets of attributes that a user
possessed in order to have access. Thus, supporting anonymity of users
requires providing anonymity for attributes or a subset of attributes of
those users.

In this paper, first we introduce statistical anonymity model for
attribute-based encryption. In particular, we define ∱-anonymity of
attributes, formulate quasi-identifier, and extend ∱-anonymity model of
attributes to quasi-identifier of users. Providing ∱-anonymity for quasi-
identifier of users makes users anonymous and protect them against
attributes statistical analysis. It is worth noting that recognizing and
protecting quasi-identifiers represent research topics in data mining as
well [15–17]. Next, we provide cryptanalytic results for several exist-
ing contributions in anonymous ABE, specifically the works presented
in [18–21].Our analysis reveals vulnerabilities in these approaches,
highlighting their weaknesses and potential security risks. Then, we
propose a Privacy-Preserving Access Control Scheme (PACS), which sup-
ports multi-authority, anonymizes user identity (without trusting any
authority or provider), and is immune against users collusion attacks,
authorities collusion attacks and chosen plaintext attacks. To pro-
vide ∱-anonymity and make PACS immune against statistical analysis,
we propose an extension to PACS, called Statistical Privacy-Preserving
Fine-Grained Access Control (SPACS). SPACS supports user statistical
anonymity without trusting authorities and providers. In this scheme,
even if cloud service providers collude with adversary, they cannot
guess the attributes embedded in quasi-identifier and consequently are
unable to re-identify the user who has sent his request to access a
ciphertext stored in the cloud.

The contributions of this paper can be summarized as follows:

1. We formulate statistical anonymity by introducing ∱-anonymity
model for attribute-based encryption. To the best of our knowl-
edge, this is the first formal model to define anonymity for
ABE.

2. We provide analytical results for evaluation of the existing works
in the context and show their vulnerabilities in users collusion,
authorities collusion, user authorization and user anonymity
protection.

3. We propose PACS as a fine-grained attribute-based access control
scheme and prove its anonymity against identity attacks, and
immunity against users collusion attacks, authorities collusion
attacks and chosen plaintext attacks.

4. We propose an extension to PACS, named SPACS, to support
∱-anonymity for attributes and individual users in an untrusted
network.

The structure of the rest of the paper is as follows: Section 2
discusses related works and the mechanisms and techniques they em-
ploy to preserve and protect anomalies in attribute-based encryption.
Section 3 presents some preliminary information needed to understand
our work. Section 4 describes the anonymity model we formulate
for attribute-based encryption. Section 5 analyzes and evaluates the
security of several related works. Section 6 discusses the system and
security models. Section 7 describes the details of the proposed scheme
PACS. Section 8 analyzes the security of the proposed PACS; it shows

the security of the scheme against authorities collusion attacks, users
collusion attacks and chosen plaintext attacks. It also discusses how
PACS anonymizes users’ identities. Section 9 presents SPACS as an
extension of PACS to support statistical anonymity. It discusses how
the proposed SPACS makes users’ identities immune against statistical
analysis of their attributes and keeps the scheme secure against chosen
plaintext attacks. Section 10 evaluates the performance of the proposed
schemes. Finally, Section 11 concludes the paper and presents future
work.

2. Related works

Preserving the privacy and anonymity of the user is a crucial aspect
of attribute-based encryption (ABE) to ensure secure and confidential
communication. Several studies have focused on providing privacy
and anonymity for attribute-based encryption [18–27]. These stud-
ies employ two main mechanisms to achieve anonymity in attribute-
based encryption: (1) hiding the user’s attributes or (2) hiding policy
information.

The first mechanism involves concealing the attributes associated
with the user, preventing unauthorized entities from deducing the
user’s identity or personal information. Various techniques are used
to achieve attribute hiding in ABE. Common techniques for achieving
attribute hiding in ABE include: (a) using proxy re-encryption to en-
crypt messages for specific attributes, while the user anonymizes the
attributes through a proxy [18,19,22]. (b) encoding the attributes of
the user in a Bloom filter and encrypting the filter along with the
message [24,27]. (c) transforming attributes into an anonymous form
by adding noise, such as via differential privacy techniques [25].
(d) using pseudonyms or arbitrary labels, or employing group-based
techniques where multiple users share common attributes or access
policies [20,21].

The second mechanism focuses on hiding the access policy associ-
ated with the ciphertext. By concealing the access structure, unautho-
rized entities are unable to infer the targeted attributes or decipher the
encrypted message. Some examples of this are given below. (a) Policy
encryption to conceal the access policy associated with the ciphertext.
By encrypting the policy, unauthorized entities are unable to infer
the targeted attributes or decipher the encrypted message [26]. (b)
Obfuscation to hide the policy logic by transforming it into an unintel-
ligible form; it can be achieved through techniques like homomorphic
encryption, functional encryption, or group-based encryption [27].

In this study, we analyze and evaluate several privacy preserving
anonymous attribute-based encryption schemes [18–23]. In [22],
Zhang et al. proposed match-then-decrypt technique to anonymously
verify the users’ legitimacy, match the ciphertext policy by CSPs before
decryption, and reduce the computation overhead of users in decryp-
tion process. In [18], Zhang et al. extended [22] and proposed match-
then-re-encrypt technique to provide anonymous ciphertext-policy
attribute-based proxy re-encryption. In [19], they proposed an anony-
mous CP-ABE scheme secure against adaptive chosen-ciphertext attack,
which extends their previous contribution [22]. However, the verifi-
cation test used to anonymously match the policy before decryption,
in [18,19,22], can disclose the policy embedded in ciphertext and
consequently reveal the quasi-identifiers of users. In [23], Nasiraee
et al. proposed a mechanism that hides and protects the privacy
of policies used for attributes (metadata) against colluding parties.
Their approach ensures user anonymity against colluding untrusted
(honest-but-curious) authorities. In their scheme, they did not con-
sider statistical de-anonymization approaches, which could be used
to identify users. In [20], Jung et al. extended [28] and proposed a
multi-authority access control scheme and reported that their work
supports data privacy, users’ anonymity and data access privilege. To
protect users’ identities and achieve full anonymity, they introduced
1-Out-of-n Oblivious Transfer crypto primitive to anonymously select
a value for each attribute requested by a user. However, a malicious
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user can request to have any other attribute value from the same set,
which may not necessarily belong to him. Moreover, in their scheme,
a malicious user can generate secret corresponding to each attribute
and have access to a file he is not eligible to (see Section 5 for more
details). In [21], Jung et al. extended [28] to make it immune against
the leakage of master secret key. However, their scheme suffers from
user and authority collusion attacks. We can summarize the vulnera-
bilities of [18–22] as follows (see more details in Section 5): (1) user
anonymity attacks [18,19,22]; (2) user authorization attacks [20]; (3)
coarse-grained access control [20,21]; and (4) user/authority collusion
attacks [21].

3. Preliminaries

In this section, first we briefly introduce prime order bilinear group.
Next, we present concepts related to tree access structure and Peder-
sen commitment scheme which will be used to design the proposed
schemes.

3.1. Bilinear group

Definition 1. Let G and G𝜔 be two cyclic multiplicative groups of
prime order 𝜀, 𝜗 be a generator of G, and 𝜛 and 𝜚 be two random
exponents in Z𝜀. We call 𝜍 ε G ϑ G  G𝜔 a bilinear pairing, if it is
a map with the following properties:

• Bilinearity: ϖ𝜑, 𝛻 ϱ G ε 𝜍(𝜑𝜛 , 𝛻𝜚 ) = 𝜍(𝜑, 𝛻)𝜛𝜚 .
• Non-degeneracy: 𝜍(𝜗, 𝜗) ∲ 1.
• Computability: ϖ𝜑, 𝛻 ϱ G, there is an efficient algorithm to
compute 𝜍(𝜑, 𝛻).

We refer to the quadruple (𝜀,G,G𝜔 , 𝜍) as bilinear group of order 𝜀.

3.2. Tree access structure

To enforce fine-grained access control and describe encryption pol-
icy, we adapt tree access structure, defined in [29], to our scheme. Let
A𝜑 be the user-associated set of attributes, ∳ be a tree with root 𝜕
representing an access structure, ∳ℵ be a sub-tree of ∳ rooted at node
ℵ, ℶℷℷ(ℵ) denotes the attribute associated with leaf node ℵ, ℸ𝜑⊳ℵ be the
number of child nodes of non-leaf node ℵ, and ⊲ℵ be a threshold value
0 ⨋ ⊲ℵ ⨋ ℸ𝜑⊳ℵ. Node ℵ will be assigned true if at least ⊲ℵ child nodes of
ℵ are assigned true; otherwise, it will be assigned false. Particularly, the
node becomes 0𝜕 gate when ⊲ℵ = 1 and 123 gate when ⊲ℵ = ℸ𝜑⊳ℵ.

Definition 2 (Satisfying a Tree Access Structure). We say that user-
associated set of attributes A𝜑 satisfies tree access structure ∳ℵ, if and
only if function ∳ℵ(A𝜑) returns 1. ∳ℵ(A𝜑) can be calculated recursively
as follows: If ℵ is a leaf node, then ∳ℵ(A𝜑) is equal to 1 if and only if
ℶℷℷ(ℵ) ϱ A𝜑. If ℵ is a non-leaf node, then ∳ℵ(A𝜑) is equal to 1 when at
least ⊲ℵ child nodes 45⊲(1⨋⊲⨋⊲ℵ) of ℵ satisfy ∳45⊲

(A𝜑) = 1. ∳ (A𝜑) = 1 if and
only if ∳𝜕(A𝜑) = 1.

3.3. Commitment scheme

A commitment scheme is a cryptographic primitive that allows one
to commit to a chosen value (or chosen statement) while keeping it
hidden from others, with the ability to reveal the committed value
later [30]. It is formalized as a reactive two party protocol between
a sender and a receiver. In the first phase, the sender holds a secret 6,
picks a random 7, ‘‘encodes’’ 6 using 7 and sends the encoded message
(i.e. the commitment to 6) to the receiver. In the second phase, the
sender sends random 7 to the receiver. The receiver can open the
commitment and find out the content of secret 6.

Fig. 1. Linking to re-identify data.

Definition 3 (Pedersen Commitment Scheme [31]). Let 𝜀 and 8 be primes
such that 8⌋𝜀 ς 1, 𝜗 and 9 be two generators for two subgroups of Zω

𝜀
with order 8. The Pedersen commitment scheme is defined as follows:

• To commit to 6 ϱ Z8 , select a random number 7 ϱ Z8 and compute
.,⊳⊳5ℷ(6, 7) = 𝜗697.

• To open the commitment, simply reveal 6 and 7.

Pedersen commitment scheme is an information theoretically hiding
scheme and is computationally binding under the discrete logarithm as-
sumption. The committer cannot open a commitment to 6 by 6φ ∲ 6 un-
less he can solve the discrete logarithm problem with a non-negligible
advantage.

4. Anonymity model: From identity to attributes

ABE utilizes user attributes to enforce access policies over en-
crypted data. However, it is crucial to recognize that the statistical
distributions of these attributes, when analyzed within the broader pop-
ulation, can construct an electronic profile that closely approximates
or even uniquely identifies users. For example, Sweeney demonstrated
in their work [32] that such statistical analysis can potentially lead
to the identification of anonymous users. They illustrated that patients
could be re-identified by cross-referencing the voting list of Cambridge,
Massachusetts, with medical data released by the Group Insurance
Commission (GIC), using personal information such as 5-digit ZIP code,
gender, and date of birth. Thus, supporting anonymity of users requires
providing anonymity for attributes or a subset of attributes of users.

The anonymity problem for attribute-based encryption can be mod-
eled as follows: There are ⨌ attribute authorities 115(1⨋5⨋⨌ ), each
of them is in charge of a distinct subset of universal attribute set A
associated with users. For each attribute, 115 is responsible for, it
knows the exact information of the users possessing that attribute.
It also knows the value associated with that attribute for each user.
Each user-specific set of attributes A𝜑 = {ℶℷℷ(1),… , ℶℷℷ(ℸ)} < A consists
of two parts: (a) A+

𝜑 = {ℶℷℷ(51),… , ℶℷℷ(5ℏ )}, the quasi-identifier, whose
assigned values contain identifying information about that user and
their combination can uniquely identify the user with a high degree of
probability, and (b) Aς

𝜑 , other attributes whose values or combination
of values do not disclose any identifying information about that user.
Each of A+

𝜑 and Aς
𝜑 can include critical or sensitive information of users.

Definition 4 (Indistinguishable Attribute Values). Let A be the set
of attributes universe, 𝛻ℏ (5) and 𝛻ℏφ (5) be two values considered for
attribute ℶℷℷ(5). 𝛻ℏ (5) and 𝛻ℏφ (5) are indistinguishable, if and only if there
is no probabilistic polynomial time adversary ⨍ with non-negligible
advantage to differentiate them.

Definition 5 (Anonymous Equivalence Class). An anonymous equiva-
lence class [𝛻ℶℷℷ(5)] for attribute ℶℷℷ(5) is the set of all possible values
𝛻ℏ (5), considered for ℶℷℷ(5) which are indistinguishable for adversary ⨍.
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For example, in the case of ℶℷℷ(5) = >𝜍ℸ⋆𝜍7, and {𝛻ℶℷℷ(5)} =
{⊳ℶ≨𝜍, 𝐴𝜍⊳ℶ≨𝜍}, if the values ⊳ℶ≨𝜍 and 𝐴𝜍⊳ℶ≨𝜍, considered for attribute
>𝜍ℸ⋆𝜍7 are indistinguishable, then [𝛻ℶℷℷ(5)] = {⊳ℶ≨𝜍, 𝐴𝜍⊳ℶ≨𝜍}.

Definition 6 (∱-Anonymous Attribute). User U satisfies ∱-anonymity
with respect to attribute ℶℷℷ(5) if and only if its associated value 𝛻ℶℷℷ(5)
belongs to an equivalence class with at least ∱ possible attribute values
{𝛻ℏ (5)}1⨋ℏ⨋∱.

∱-Anonymity, proposed by Samarati and Sweeney [33], guarantees
that in a set of ∱ objects with a similarity, the target object is indistin-
guishable from the other∱-1 objects. For example, in the case of ℶℷℷ(5) =
>𝜍ℸ⋆𝜍7, if [𝛻ℶℷℷ(5)] = {⊳ℶ≨𝜍, 𝐴𝜍⊳ℶ≨𝜍} (i.e. two values ⊳ℶ≨𝜍 and 𝐴𝜍⊳ℶ≨𝜍,
which are considered for attribute >𝜍ℸ⋆𝜍7, are indistinguishable), then
attribute >𝜍ℸ⋆𝜍7 satisfies 2-anonymity.

Definition 7 (Quasi-Identifier). Let U be a set of users, A be a the
set of attributes universe,

⌈
𝛻ℶℷℷ(1),… , 𝛻ℶℷℷ(ℸ)

⌉
be a sequence of values

associated with
⌈
ℶℷℷ(1),… , ℶℷℷ(ℸ)

⌉
, 𝐴𝐵 ε U  2A is a function that maps

each user to his associated attributes, and 𝐴𝜗 ε 2A  2U is a map from
a set of attributes to a subset of users supporting those attributes. Set
of attributes A+ = {ℶℷℷ(51),… , ℶℷℷ(5ℏ )} < A is quasi-identifier of A, if

1. ∇𝜑 ϱ U 6𝜑𝐵9 ℷ9ℶℷ 𝐴𝜗(𝐴𝐵 (𝜑) ∂A+ ) = {𝜑} and
2. A+ is minimal.

where, 𝐴𝐵 (.) ∂A+ is the projection of 𝐴𝐵 (.) on quasi-identifier A+.

In the example shown in Fig. 1, A+ = {ZIP Code, Date of Birth,
Gender}.

Definition 8 (Indistinguishable Sequences of Attribute Values). Two se-
quences of attribute values

⌈
𝛻ℶℷℷ(51),… , 𝛻ℶℷℷ(5ℏ )

⌉
and

⌈
𝛻φℶℷℷ(51),… ,

𝛻φℶℷℷ(5ℏ )
⌉
, associated with the sequence of attributes

⌈
ℶℷℷ(51),… , ℶℷℷ(5ℏ )

⌉
,

are indistinguishable, if and only if there is no probabilistic polynomial
time adversary ⨍ with non-negligible advantage to differentiate them.

Definition 9 (∱-Anonymous User). Let A𝜑 = {ℶℷℷ(1),… , ℶℷℷ(ℸ)} <
A be the set of attributes associated with user U. User U is ∱-
anonymous, if and only if there are at least ∱ possible indistinguishable
sequences of attribute values

⌈
𝛻ℶℷℷ(51),… , 𝛻ℶℷℷ(5ℏ )

⌉
for attributes se-

quence
⌈

ℶℷℷ(51),… , ℶℷℷ(5ℏ )
⌉
, where A+

𝜑 = {ℶℷℷ(51),… , ℶℷℷ(5ℏ )} is the
projection of A𝜑 on quasi-identifier A+.

Definition 10 (∱-Anonymity). Let A be the set of attributes universe,
𝛻ℶℷℷ(5) be an attribute value for attribute ℶℷℷ(5) and A+ = {ℶℷℷ(51),… ,
ℶℷℷ(5ℏ )} < A be a quasi-identifier associated with A. We say that
attribute-based access control scheme ⨎ satisfies ∱-anonymity, if and
only if there are at least ∱ possible indistinguishable sequences of
attribute values

⌈
𝛻ℶℷℷ(51),… , 𝛻ℶℷℷ(5ℏ )

⌉
for attributes sequence

⌈
ℶℷℷ(51),

… , ℶℷℷ(5ℏ )
⌉
.

Proposition 1. Let ⨎ be an attribute-based access control scheme with
attribute universe A, A+ < A be a quasi-identifier associated with A,
A𝜑 = {ℶℷℷ(1),… , ℶℷℷ(ℸ)} < A be the set of attributes associated with user
U, A+

𝜑 < A𝜑 is the projection of A𝜑 on quasi-identifier A+. If each user is
∱-anonymous in ⨎ , then ⨎ satisfies ∱-anonymity.

Proof. If ⨎ satisfies ∱-anonymity for all users, then for all A+
𝜑 (A+

𝜑 <
A+), there are at least ∱ possible indistinguishable sequences of at-
tribute values. More specifically, since for any user U in the definition
of quasi-identifier ∱-anonymity does hold, we can deduce that there
are at least ∱ possible indistinguishable sequences of attribute values
for A+ as well. Thus, ⨎ satisfies ∱-anonymity. ⋛

Each user, satisfying ∱-anonymity, has a maximum probability 1−∱
to be re-identified. Depending on statistical tolerance limit considered
for re-identifying users in ⨎ , different values can be considered for ∱.

Table 1
Medical data information of users.
Ethnicity Date of birth Gender Zip code Diagnosis

African Americans 09/01/17 Male 02224 Short of breath
Caucasian Americans 09/05/00 Female 02224 Hypertension
African Americans 24/07/88 Male 02228 Chest pain
Caucasian Americans 09/11/67 Female 02228 Hypertension
Caucasian Americans 24/01/88 Female 02228 Hypertension
Caucasian Americans 29/10/76 Female 02228 Short of breath
African Americans 09/08/99 Male 02229 Obesity
African Americans 29/05/07 Female 02229 Short of breath
Caucasian Americans 11/03/01 Male 02226 Obesity
African Americans 18/06/13 Male 02226 Chest pain
Caucasian Americans 25/10/93 Female 02232 Short of breath
African Americans 02/04/73 Male 02231 Obesity

Example 1. Table 1 represents a sample of patients’ medical records.
For attribute 𝐶ℷ9ℸ5𝐵5ℷ4, we have 𝛻ℶℷℷ(5) = {African Americans, Caucasian
Americans} and for attribute >𝜍ℸ⋆𝜍7, 𝛻ℶℷℷ(5) = {male, female}. It shows
that the number of entries for African Americans is same as for Caucasian
Americans. Same applies for the number of entries for 𝐴𝜍⊳ℶ≨𝜍s and
⊳ℶ≨𝜍s; but, in combination there is only one Caucasian American female.
Moreover, of these attributes, >𝜍ℸ⋆𝜍7 alone could uniquely identify
half of patients. Thus, only based on >𝜍ℸ⋆𝜍7, the adversary has non-
negligible advantage to differentiate users (i.e. 𝐷 (Gender=male) ς 1

2 =
𝐷 (Gender=female) ς 1

2 = 𝐸). Consequently, values ⊳ℶ≨𝜍 and 𝐴𝜍⊳ℶ≨𝜍,
considered for attribute >𝜍ℸ⋆𝜍7 are indistinguishable and [𝛻ℶℷℷ(5)] =
{male, female}. Furthermore, if the adversary only has access to ℶℷℷ(5) =
>𝜍ℸ⋆𝜍7, and if [𝛻ℶℷℷ(5)] = {male, female}, then attribute >𝜍ℸ⋆𝜍7 satisfies
2-anonymity.

This example can be generalized for ABE in which attributes of a
user can be deduced from a ciphertext, he requested to have access to,
while the values of those attributes are embedded (hidden) in his own
secret key. Moreover, the experiment, reported in [32], shows that one
could uniquely identify 12% of the voters only with their Date of Birth,
29% with their Date of Birth and Gender, 69% with Date of Birth and Zip
Code and 97% when their Zip Code, Gender and Date of Birth were used.
Definition 7 states that a set of attributes is a quasi-identifier if a user
can be uniquely identified by possessing certain attributes. According
to this definition, such a combination of attributes, which could be
used to uniquely identify users, is called quasi-identifier of user. For the
running example, {Zip Code, Date of Birth, Gender} together construct
the quasi-identifier for users. We say a scheme satisfies ∱-anonymity,
if and only if there are at least ∱ possible indistinguishable values that
could be considered for those attributes of user which belong to his
quasi-identifier. For our example, there should be at least ∱ possible
indistinguishable values for the set {Zip Code, Date of Birth, Gender}, if
we want to satisfy ∱-anonymity of users.

5. Cryptanalysis and evaluation of related works

In order to address privacy protection of users and preservation of
their anonymity against malicious authorities and providers, anony-
mous ABE has been studied in [18–22]. Zhang et al. [19] proposed an
anonymous CP-ABE scheme, secure against adaptive chosen-ciphertext
attack, which extends their contribution in [22]. More specifically,
they introduced match-then-decrypt technique to provide a light-weight
matching phase before decryption and verify whether the user’s at-
tributes match the hidden access policy embedded in ciphertext without
engaging in decryption process. Their scheme [22] consists of four
algorithms:

Setup(𝐹): Let G, G𝜔 be cyclic multiplicative groups of prime order 𝜀,
𝜍 ε G ϑ G  G𝜔 be a bilinear map. 𝐺 ε {0, 1}ω  G be a hash
function which maps any attribute value to an element in G. Assume
that there are ℸ attributes 𝐻1,… ,𝐻ℸ in attribute universe ⨏ (i.e. ⨏ =
{𝐻1,… ,𝐻ℸ}), each of them has ℸ5 different values 𝐼5 = {𝛻5,1,… , 𝛻5,ℸ5}.
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Attribute authority 11 chooses random elements 4 ϱ𝜕 Z𝜀, 𝜗1, 𝜗2 ϱ𝜕 G
and computes 𝐽 = 𝜍(𝜗1, 𝜗2)4. Then, it publishes 𝐷𝐾 = (𝜗, 𝜗1, 𝜗2, 𝐽 ) as
system public key and keeps 𝐿𝐾 = (4) secret as its own master secret
key.

KeyGeneration(𝐷𝐾 ,𝐿𝐾 ,𝑀): Let 𝑀 =
{
𝑀1,… ,𝑀ℸ

}
be the attribute list

for the user who wants to obtain the corresponding attribute secret
key 𝐼𝐾𝑀, 𝛻5,⊲5 be the attribute value whose index satisfies 𝑀5 =
𝛻5,⊲5 , (𝐼5𝜗𝐾𝜍4>𝜍ℸ,𝐼5𝜗ℸ,𝑁 𝜍75𝐴4) be a strongly existentially unforgeable
signature scheme and (𝐾6,𝐾𝛻) be the one-time signing-verification key
pair generated by 𝐼5𝜗𝐾𝜍4>𝜍ℸ in which 𝐾𝛻 has 𝛻 bits. 11 chooses
random elements 71, 72, … , 7ℸ+𝛻ς1, 7, 𝐹, 𝑂𝐹, 𝐹𝛻, 𝑂𝐹𝛻, {𝑂75}1⨋5⨋ℸ+𝛻 ϱ𝜕 Z𝜀, sets
7ℸ+𝛻 = 4 ς ⦃ℸ+𝛻ς1

5=1 75 mod 𝜀 and 𝑂7 = ⦃ℸ+𝛻
5=1 𝑂75 mod 𝜀, and computes

[3𝑃,0, 𝑂3𝑃,0] = [𝜗71, 𝜗
4ς𝑂7
2 ], 30 = 𝜗𝐹2 , 𝑂30 = 𝜗𝑂𝐹1 , {[3𝑃,5,35,1, 𝑂35,1]}1⨋5⨋ℸ =

{[𝜗𝑂752 𝐺(5 + 𝛻5,⊲5 )
7, 𝜗751 𝐺(0⦄5⦄𝛻5,⊲5 )𝐹, 𝜗

75
2 𝐺(1⦄5⦄𝛻5,⊲5 )

𝑂𝐹]}1⨋5⨋ℸ, [30,𝛻, 𝑂30,𝛻] =
[𝜗𝐹𝛻2 , 𝜗

𝑂𝐹𝛻
1 ] and {[3𝑃,5, 35,1, 𝑂35,1]}ℸ+1⨋5⨋ℸ+𝛻 = {[𝜗𝑂752 𝐺(5 + 𝛻)7, 𝜗751 𝐺(0⦄5⦄𝛻)𝐹,

𝜗752 𝐺(1⦄5⦄𝛻)𝑂𝐹]}ℸ+1⨋5⨋ℸ+𝛻. The attribute secret key 𝐼𝐾𝑀 would be (3𝑃,0,
𝑂3𝑃,0, 30, 𝑂30, [30,𝛻, 𝑂30,𝛻], {[3𝑃,5, 35,1, 𝑂35,1]}1⨋5⨋ℸ, {[3𝑃,5,35,1,
𝑂35,1]}ℸ+1⨋5⨋ℸ+𝛻),

AnonEncrypt (𝐷𝐾 ,𝐿 ,𝑄 ): Let us assume that data owner (DO) en-
crypts message 𝐿 ϱ G𝜔 under access policy 𝑄 =

{
𝑄1,… ,𝑄ℸ

}
, where

𝑄5 is a policy corresponding to attribute 𝐻5. Then, DO chooses random
elements 6, 6φ, 6± ϱ𝜕 Z𝜀 and sets 𝑅. = 𝐿𝐽 6, .𝑃 = 𝐽 6φ , 𝑂.0 = 𝜗6φ1 , .1 = 𝜗6φφ2 ,
𝑂.1 = 𝜗6ς6φφ1 , and computes {{.

5,ℷ,𝑃
, .

5,ℷ,0 , 𝑂.
5,ℷ,0 }1⨋ℷ⨋ℸ5 }1⨋5⨋ℸ , as follows:

1. If 𝛻5,ℷ ϱ 𝑄5, then [.
5,ℷ,𝑃

,.
5,ℷ,0 , 𝑂.5,ℷ,0 ] = [𝑆

5,𝑃
𝐺(5 + 𝛻5,ℷ)6

φ , 𝑆
5,0

𝐺(0⦄5⦄𝛻5,ℷ)6
φφ , 𝑆

5,1𝐺(1⦄5⦄𝛻5,ℷ)6ς6
φφ ],

2. If 𝛻5,ℷ ∓ 𝑄5, then [.
5,ℷ,𝑃

,.
5,ℷ,0 , 𝑂.5,ℷ,0 ] will be random elements;

where 𝑆
5,𝑃
(1 ⨋ 5 ⨋ ℸ) ϱ G are random elements generated by DO such

that
⟨ℸ

5=1 𝑆5,𝑃
= 1G. In addition, for ℸ+1 ⨋ 5 ⨋ ℸ+ 𝛻, DO computes [.

5,𝑃
,

.
5,0 , 𝑂.

5,0 ] = [𝐺(5 + 𝛻)6,𝐺(0⦄5⦄𝛻)6φ , 𝐺(0⦄5⦄𝛻)6ς6φφ ]. It computes a signa-
ture 𝑆 = 𝐼5𝜗ℸ(.𝜔0,𝐾𝛻,𝐾6), where .𝜔0 =

⟩
𝑅. ,.𝑃, 𝑂.0,.1, 𝑂.1, {{.5,ℷ,𝑃

,.
5,ℷ,0 ,

𝑂.
5,ℷ,0 }1⨋ℷ⨋ℸ5 }1⨋5⨋ℸ , {.5,𝑃

,.
5,0 , 𝑂.5,0 }ℸ+1⨋5⨋ℸ+𝛻

⟪
. Finally, the ciphertext of 𝐿

with respect to 𝑄 is output as .𝜔𝑄 = (.𝜔0,𝐾𝛻, 𝑆).

AnonDecrypt (𝐷𝐾 ,.𝜔𝑄 ,𝐼𝐾𝑀): The ciphertext .𝜔𝑄 is tested and de-
crypted by user with secret key 𝐼𝐾𝑀 as follows:

1. Matching: user checks whether 𝑀 𝑇 𝑄 in terms of the following
equation:

𝜍(
ℸ⟫
5=1

.
5,ℷ,𝑃

ℸ+𝛻⟫
5=ℸ+1

.
5,𝑃
,3𝑃,0)

?= 𝜍( 𝑂.0, 𝑂3𝑃,0

ℸ+𝛻⟫
5=1

3𝑃,5)

2. Decryption: If the indexes satisfy 𝑀5 = 𝛻5,ℷ, user can compute
plaintext 𝐿 as follows:

𝐿 = 𝑅. .
𝜍(⟨ℸ

5=1 .5,ℷ,0 ,30).𝜍(
⟨ℸ

5=1
𝑂.
5,ℷ,0 , 𝑂30)

𝜍(.1,
⟨ℸ+𝛻

5=ℸ+1 35,1)

.
𝜍(⟨ℸ+𝛻

5=ℸ+1 .5,0 ,30,𝛻).𝜍(
⟨ℸ+𝛻

5=ℸ+1
𝑂.
5,0 , 𝑂30,𝛻)

𝜍( 𝑂.1,
⟨ℸ+𝛻

5=ℸ+1
𝑂35,1)

Our analysis shows that the proposed scheme suffers from the following
problem:

User Anonymity Attacks: In the proposed scheme, the authors as-
sumed that there are ℸ attributes 𝐻5(1 ⨋ 5 ⨋ ℸ), each 𝐻5 has ℸ5 different
values 𝐼5 = {𝛻5,1,… , 𝛻5,ℸ5}. Now, let us assume that DO encrypts message
𝐿 under access policy 𝑄 =

{
𝑄1,… ,𝑄ℸ

}
, where 𝑄5 is a policy corre-

sponding to attribute 𝐻5. Then, DO uploads ciphertext .𝜔 =(.
𝑃
, 𝑈.0,

𝑅., .1, 𝑈.1, {{.5,ℷ,𝑃
, .

5,ℷ,0 , 𝑈.
5,ℷ,0 }1⨋ℷ⨋ℸ5 }1⨋5⨋ℸ , {.5,𝑃

, .
5,0 , 𝑈.

5,0 }ℸ+1⨋5⨋ℸ+𝛻) to the

server. More specifically, for all 𝛻5,ℷ, if 𝛻5,ℷ ϱ 𝑄5, then .
5,ℷ,𝑃

will be equal
to 𝑆5,𝑃𝐺(5 + 𝛻5,ℷ)6

φ , where 6φ is a secret selected by DO and 𝑆5,𝑃(1 ⨋ 5 ⨋ ℸ)

are random elements in G such that
⟨ℸ

5=1 𝑆5,𝑃 = 1G; otherwise, .5,ℷ,𝑃
will

be a random element. For each policy 𝑄5 embedded in ciphertext .𝜔 ,
the adversary may select different values 𝛻5,𝑉ℷ(1⨋𝑉ℷ⨋ℸ5), compute 𝐺(5 + 𝛻5,𝑉ℷ)
and check whether 𝜍(⟨ℸ

5=1 .5,ℷ,𝑃
, 𝜗1)

?= 𝜍( 𝑈.0 ,
⟨ℸ

5=1 𝐺(5 + 𝛻5,𝑉ℷ)), where
𝑈.0 is equal to 𝜗6φ1 . If the answer is yes, it can infer that the selected
tuple [𝛻1,𝑉ℷ,… , 𝛻ℸ,𝑉ℷ] is a valid attribute tuple which is included in the
ciphertext. Thus, the hidden policy 𝑄 =

{
𝑄1,… ,𝑄ℸ

}
will be disclosed

and the adversary can guess the attributes (and consequently identity)
of any user who requests to access the ciphertext.

In another work, Zhang et al. [18] proposed match-then-re-encrypt
scheme to provide a light-weight matching phase before re-encryption
and updating access policy. The scheme consists of four main al-
gorithms Setup, KeyGeneration, Encryption and Decryption, which are
described as follows:

Setup(𝐹): This algorithm which is run by attribute authority 11 sets
authority’s master secret key𝐿𝐾 and publishes system public key 𝐷𝐾.
It chooses two cyclic multiplicative groups G, G𝜔 of prime order 𝜀,
bilinear map 𝜍 ε G ϑ G  G𝜔 from G ϑ G to G𝜔 , hash function
𝐺 ε {0, 1}ω  G which maps any attribute value to a random element
in G, generator 𝜗 for group G, random elements 4 ϱ𝜕 Z𝜀, 𝜗2, 𝜗3 ϱ𝜕 G
and encoding function 𝐶 ε G  G𝜔 as an encoding between G and G𝜔 .
Assumed that there are ℸ attributes 𝐻5(1 ⨋ 5 ⨋ ℸ) in attribute universe
⨏ = {𝐻1,… ,𝐻ℸ}, each of them can take its value from ℸ5 different val-
ues 𝐼5 = {𝛻5,1,… , 𝛻5,ℸ5}. For each attribute 𝐻5(1 ⨋ 5 ⨋ ℸ), the algorithm
chooses {𝜔5,ℷ ϱ𝜕 G, ℶ5,ℷ ϱ𝜕 Z𝜀, 𝑊5,ℷ ϱ𝜕 Z𝜀}1⨋ℷ⨋ℸ5 and computes {{15,ℷ =
𝜔 ℶ5,ℷ
5,ℷ , 𝑋5,ℷ = 𝜔 𝑊5,ℷ

5,ℷ }1⨋ℷ⨋ℸ5}1⨋5⨋ℸ. It also computes 𝜗1 = 𝜗4, 𝐽 = 𝜍(𝜗, 𝜗1, 𝜗2)
and publishes 𝐷𝐾 = (𝜗, 𝜗1, 𝜗2, 𝜗3, 𝐽 , {{𝜔5,ℷ,15,ℷ,𝑋5,ℷ}1⨋ℷ⨋ℸ}1⨋5⨋ℸ) as
system public key and keeps 𝐿𝐾 = (4, {{ℶ5,ℷ, 𝑊5,ℷ}1⨋ℷ⨋ℸ}1⨋5⨋ℸ) secret as
11’s own master secret key.

KeyGeneration(𝐷𝐾 ,𝐿𝐾 ,𝑀): Let 𝑀 =
{
𝑀1,… ,𝑀ℸ

}
be the attribute list

for the user who wants to obtain the corresponding attribute secret
key 𝐼𝐾𝑀. 11 chooses random elements 7φ, 𝑉⋆, {75𝑂75, 𝐹5}1⨋5⨋ℸ ϱ𝜕 Z𝜀,
sets 7 = 4 ς ⦃ℸ

5=1 75 mod 𝜀 and 𝑂7 = ⦃ℸ
5=1 𝑂75 mod 𝜀, and computes

[30, 𝑂3, 𝑉3,3𝑃,0] = [𝜗4ς72 , 𝜗4ς𝑂72 , 𝜗⋆3 , 𝜗
7φ ]. For 1 ⨋ 5 ⨋ ℸ, suppose that

𝛻5,⊲5 be the attribute value whose index satisfies 𝑀5 = 𝛻5,⊲5 . Then, 11
computes [3𝑃,5,35,0,35,1,35,2] = [𝜗𝑂752 𝜔

7φ
5,⊲5
, 𝜗752 𝑋

𝐹5ℶ5,⊲5
5,⊲5

, 𝜗𝐹5ℶ5,⊲5 , 𝜗𝐹5𝑊5,⊲5 ] for
all 1 ⨋ 5 ⨋ ℸ. The attribute secret key 𝐼𝐾𝑀 would be

⟩
30, 𝑂30, 𝑉30,3𝑃,0,

{[3𝑃,5,35,0,35,1, 35,2]}1⨋5⨋ℸ
⟪
,

Encrypt (𝐷𝐾 ,𝐿 ,𝑄 ): Let us assume that data owner DO encrypts
message 𝐿 ϱ G𝜔 under access policy 𝑄 =

{
𝑄1,… ,𝑄ℸ

}
, where 𝑄5

is a policy corresponding to attribute 𝐻5. Then, DO chooses random
elements 6, 6φ, 6φφ ϱ𝜕 Z𝜀 and sets 𝑅. = 𝐿𝐽 6, .0 = 𝜗6,.𝜕𝐶 = 𝜗63,.𝑃 = 𝐽 6φ ,
. φ

0 = 𝜗6φ . DO also selects random elements 𝑆
5,𝑃
(1 ⨋ 5 ⨋ ℸ) ϱ G, such that⟨ℸ

5=1 𝑆5,𝑃
= 1G, and computes {{.5,ℷ,𝑃

, .
5,ℷ,1 , .5,ℷ,2 }1⨋ℷ⨋ℸ5 }1⨋5⨋ℸ as follows:

1. If 𝛻5,ℷ ϱ 𝑄5, then [.
5,ℷ,𝑃

,.
5,ℷ,1 ,.5,ℷ,2 ] = [𝑆

5,𝑃
𝜔 6φ
5,ℷ ,𝑋

6ς6φφ
5,ℷ ,16φφ

5,ℷ ],
2. If 𝛻5,ℷ ∓ 𝑄5, then [.

5,ℷ,𝑃
,.

5,ℷ,1 ,.5,ℷ,2 ] will be random elements in G.

Finally, the ciphertext of 𝐿 with respect to 𝑄 is .𝜔𝑄 = (.𝑃,. φ
0, 𝑅. ,.0,

.𝜕𝐶 , {{.5,ℷ,𝑃
, .

5,ℷ,1 , .5,ℷ,2 }1⨋ℷ⨋ℸ5 }1⨋5⨋ℸ ).

Decrypt (𝐷𝐾 ,.𝜔𝑄 ,𝐼𝐾𝑀): The ciphertext .𝜔𝑄 is tested and decrypted
by user with secret key 𝐼𝐾𝑀 as follows:

1. Matching: user checks whether 𝑀 𝑇 𝑄 (∇⊲1,… , ⊲ℸ ε 𝑀1 =
𝛻1,⊲1 ,… ,𝑀ℸ = 𝛻ℸ,⊲ℸ ) in terms of the following equation:

.𝑃 =
𝜍(. φ

0, 𝑂30
⟨ℸ

5=1 3𝑃,5)
𝜍(⟨ℸ

5=1 .5,⊲5 ,𝑃
,3𝑃,0)

2. Decryption: If the indexes satisfy 𝑀5 = 𝛻5,⊲5 , user can computes
plaintext 𝐿 as follows:

𝐿 =
𝑅. .𝜍(⟨ℸ

5=1 .5,⊲5 ,1
,35,1)..5,⊲5 ,2

,35,2

𝜍(.0,30).
⟨ℸ

5=1 𝜍(.0,35,0)
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Zhang et al. [18] also introduced two more algorithms (i.e. RKGen,
and Reencrypt) and extended Decrypt algorithm to support proxy re-
encryption and access policy updating. However, their anonymous
attribute-based encryption scheme suffers from the following problem:

User Anonymity Attacks: Similar to [19,22], the authors assumed ℸ
different attributes 𝐻5(1 ⨋ 5 ⨋ ℸ), each of them has ℸ5 multiple values
𝐼5 = {𝛻5,1,… , 𝛻5,ℸ5}. Now, let us assume that DO encrypts message
𝐿 under access policy 𝑄 =

{
𝑄1,… ,𝑄ℸ

}
, where 𝑄5 is a policy that

corresponds to attribute 𝐻5. Then, DO uploads ciphertext .𝜔 =(.
𝑃
,

. φ
0, 𝑅., .0, .𝜕𝐶 , {{.5,ℷ,𝑃

, .
5,ℷ,1 , .5,ℷ,2 }1⨋ℷ⨋ℸ5 }1⨋5⨋ℸ ) to the server. In this

scheme, if 𝛻5,ℷ ϱ 𝑄5, then .
5,ℷ,𝑃

will be equal to 𝑆5,𝑃𝜔 6φ
5,ℷ , where 6φ is

a secret element selected by DO and 𝑆5,𝑃(1 ⨋ 5 ⨋ ℸ) are random
elements in G such that

⟨ℸ
5=1 𝑆5,𝑃 = 1G and 𝜔

5,ℷ
are parts of public

parameter 𝐷𝐾 published earlier in Setup process. If 𝛻5,ℷ ∓ 𝑄5, then
.

5,ℷ,𝑃
will be random elements in G. For each policy 𝑄5 embedded in

ciphertext .𝜔 , the adversary may select different values 𝛻5,𝑉ℷ(1⨋𝑉ℷ⨋ℸ5) and

check whether 𝜍(⟨ℸ
5=1 .5,ℷ,𝑃

, 𝜗) ?= 𝜍(. φ
0,
⟨ℸ

5=1 𝜔5,𝑉ℷ), where . φ
0 is equal to

𝜗6φ . If the answer is yes, it can infer that the selected tuple [𝛻1,𝑉ℷ,… , 𝛻ℸ,𝑉ℷ]
is a valid attribute tuple which is included in the ciphertext. Thus, the
hidden policy 𝑄 =

{
𝑄1,… ,𝑄ℸ

}
will be disclosed and the adversary

can guess the attributes and consequently quasi-identifier of the user
who has requested to access the ciphertext.

It is worth noting that the complexity of executing user anonymity
attacks is similar to the complexity of executing the decryption process.
To conclude, the schemes in [18,19,22], in addition to their vulnera-
bility to user anonymity attacks, they do not make use of tree access
structures but rather integrate all attribute constraints into one piece of
ciphertext allowing for only restricted forms of policies (i.e. the policies
in the form of conjunctions of atomic formulas).

Jung et al. [20] proposed a multi-authority access control scheme
(an extension to the contribution in [28]) and reported that their work
supports data privacy, user anonymity and data access privilege. They
also introduced 1-Out-of-k Oblivious Transfer crypto primitive to protect
user’s identity and achieve full anonymity. Their proposed scheme
consists of the following four algorithms:

Setup(A,𝑌): The algorithm, which is run by attribute authorities
11ℏ(ℏϱ{1,…,⨌ }), takes as input the attribute universe A and an implicit
security parameter 𝑌. In this algorithm, one of the authorities selects
and publishes bilinear group G0, prime number 𝜀, and generator
𝜗. Moreover, each attribute authority 11⊲ picks random parameters
𝛻⊲, 6⊲ℏ(ℏϱ{1,…,⨌ }⟥{⊲}) ϱ Zω

𝜀 , computes 𝐽⊲ = 𝜍(𝜗, 𝜗)𝛻⊲ and 𝜗6⊲ℏ , and shares
them with all other authorities. Receiving ⨌ ς1 pieces of 𝜗6ℏ⊲ and 𝐽ℏ =
𝜍(𝜗, 𝜗)𝛻ℏ generated by other authorities 11ℏ(ℏϱ{1,…,⨌ }⟥{⊲}), it computes
𝐽 = ⟨⨌

⊲=1 𝜍(𝜗, 𝜗)𝛻⊲ = 𝜍(𝜗, 𝜗)
⦃⨌

⊲=1 𝛻⊲ and ℵ⊲ =
⟩⟨

ℏϱ{1,…,⨌ }⟥{⊲}
𝜗6⊲ℏ

⟪
−

⟩⟨
ℏϱ{1,…,⨌ }⟥{⊲}

𝜗6ℏ⊲
⟪

= 𝜗

❲⦃
ℏϱ{1,…,⨌ }⟥{⊲}

𝜗6⊲ℏ ς⦃
ℏϱ{1,…,⨌ }⟥{⊲}

𝜗6ℏ⊲
❳

. Then, the
master secret key for 11⊲ is {𝛻⊲, ℵ⊲} and the public parameter of the
whole system is 𝐷𝐾 = (G0, 𝜗, 𝐽 ).

KeyGeneration(𝐷𝐾 ,𝐿𝐾ℶ⊲(1⨋⊲⨋⨌ ),A𝜑): The key generation algorithm,
which is run by attributes authorities 11⊲(1⨋⊲⨋⨌ ), takes as input public
parameters 𝐷𝐾, master secret keys 𝐿𝐾ℶ⊲(1⨋5⨋⨌ ) and user’s set of
attributes A𝜑. To perform 𝐾𝜍4>𝜍ℸ𝜍7ℶℷ5,ℸ, each authority 11⊲ selects
a random parameter ⋆⊲ ϱ Zω

𝜀 , computes ℵ⊲.𝜗(𝛻⊲+⋆⊲) and shares it
with other authorities. Receiving ⨌ ς 1 pieces ℵℏ .𝜗(𝛻ℏ+⋆ℏ ) generated by
other authorities 11ℏ(ℏϱ{1,…,⨌ }⟥{⊲}), it computes 3 = ⟨5=1

⨌
ℵ5.𝜗𝛻5+⋆5 =

𝜗
⦃⨌

5=1 𝛻5+⋆5 and sends it to user U. It also privately sends ℵ⊲.𝜗⋆⊲ to
the user. For each attribute ℶℷℷ(5) ϱ A𝜑, each authority 11⊲ selects
a random number 75 ϱ7 Zω

𝜀 , computes 𝐺(ℶℷℷ(5))75 and 3φ
5 = 𝜗75 , and

sends them to U. Then, user U computes 35 = 𝐺(ℶℷℷ(5))75 .⟨⨌

⊲=1 ℵ⊲.𝜗
⋆⊲ =

𝐺(ℶℷℷ(5))75 .𝜗
⦃⨌

⊲=1 ⋆⊲ and constructs his own secret key 𝐼𝐾𝑍 = {3 =
𝜗
⦃⨌

5=1 𝛻5+⋆5 , ϖ5 ϱ A𝜑 ε (35 = 𝐺(ℶℷℷ(5))75 .𝜗
⦃⨌

⊲=1 ⋆⊲ ,3φ
5 = 𝜗75 )}.

Encryption(𝐷𝐾 , {∳≨}≨ϱ{0,…,7ς1},𝐿): The encryption algorithm, which is
run by DO, takes as input public parameters 𝐷𝐾, a set of privilege

trees {∳≨}≨ϱ{0,…,7ς1}, and plaintext 𝐿 . It is assumed that user U can
execute specific operation on the ciphertext if and only if his attributes
satisfy the corresponding privilege tree ∳≨. More specifically, ∳0 stands
for the privilege to read 𝐿 . In this algorithm, DO encrypts 𝐿 using
a random symmetric key 𝐾𝜍 and an existing symmetric encryption
scheme. For each ∳≨, DO selects random number 6≨ in Zω

𝜀 and shares
it in privilege tree ∳≨ with root 𝜕≨ (In a top-down manner, similar
to the way which has done in [29]). It also selects random number
9 ϱ Zω

𝜀 and calculates 𝜗9.6≨ and 39ς1 . Then, it calculates ciphertext
.𝜔 =

⟩
{∳≨}≨ϱ{0,…,7ς1}, 𝐶0 = 𝐾𝜍.𝐽 60 , . = 𝜗96≨ , 𝑂. = 39ς1 , {.5 = 𝜗85(0),

. φ
5 = 𝐺(ℶℷℷ(5))85(0)}ϖ5ϱA∳≨ ϖ≨ϱ{1,…,7ς1}

⟪
, where A∳≨ is the set of attributes

included in ∳≨. At the end, DO sends CT as well as secret 𝑁 𝜕 =
⟩
{𝐶≨ =

𝐽 6≨}≨ϱ{1,…,7ς1}

⟪
to cloud service provider CSP.

Decryption(𝐷𝐾 ,𝐼𝐾𝑍 ,.𝜔 ): The decryption algorithm, which is run by
U, takes as input public parameters 𝐷𝐾, user’s secret key 𝐼𝐾𝑍 and ci-
phertext .𝜔 . To have access to plaintext𝐿 , U computes 3𝜍𝐵2,⋆𝜍(.𝜔 ,
𝐼𝐾𝑍 , ℵ) = 𝜍(3ℏ ,.4)

𝜍(3φ
ℏ ,.

φ
4)

= 𝜍(𝜗, 𝜗)(
⦃⨌

5=1 ⋆5 .84(0))−𝑊 for each leaf node 4 in
the privilege tree ∳𝜀 and corresponding attribute ℶℷℷ(ℏ) ϱ A𝜑. Then,
it recursively computes 1 as 3𝜍𝐵2,⋆𝜍(𝜕) for root node 𝜕 of ∳𝜀 as
3𝜍𝐵2,⋆𝜍(.𝜔 ,𝐼𝐾𝑍 ,𝜕). If U is eligible to access 𝐿 (i.e. the privilege
tree ∳𝜀 is satisfied by A𝜑), then 1 will be equal to 𝜍(𝜗, 𝜗)

⦃⨌

5=1 ⋆5 .8𝜕(0) =
𝜍(𝜗, 𝜗)

⦃⨌

5=1 ⋆5 .6𝜀 . If U wants to read 𝐿 , the decryption key 𝐾𝜍 can be

recovered by 𝐾𝜍 = 𝐶0 .1
𝜍(. , 𝑂.)

=

⟩
𝐾𝜍 .𝐽

60
⟪
.
❲
𝜍(𝜗,𝜗)

⦃⨌

5=1 ⋆5 .60
❳

𝜍(𝜗,𝜗)
⦃⨌

5=1(𝛻5+⋆5 )60
. For any other

operation, U decrypts the corresponding privilege tree ∳ℏ , recovers 𝐽 6ℏ

and sends it to the cloud server. The cloud server checks whether
𝐽 6ℏ = 𝐶ℏ and proceeds if the response is yes.

By analyzing the underlying algorithms in [20], we found that
the scheme suffers from user authorization attacks and coarse-grained
access control. In the following, we explain our findings.

User Authorization Attacks: Assume that malicious user U has been
authorized and received 3 = 𝜗♭𝛻⊲+⋆⊲ and ℵ⊲.𝜗⋆⊲ to generate his own se-
cret key 𝐼𝐾𝜑 = {3 = 𝜗♭𝛻⊲+⋆⊲ ,ϖ5 ϱ A𝜑 ε (35 = 𝐺(ℶℷℷ(5))75 .𝜗♭⋆⊲ ,3φ

5 = 𝜗75 )}
in Key Generation phase. He can calculate 𝑈3 = ⟨

ℵ⊲.𝜗⋆⊲ , select random
number 75φ and forge secret key for any attribute ℶℷℷ(5φ) (i.e. 35φ =
𝐺(ℶℷℷ(5φ))75φ .𝜗♭⋆⊲ ,3φ

5 = 𝜗75φ ) and thus be authorized to access any file
he wants.

Jung et al. also introduce AnonyControl-F approach, the second ap-
proach presented in [20], to achieve full anonymity. Since in the former
approach, described above, in KeyGeneration algorithm, each attribute
authority 11𝐾 is responsible for computing and sending 𝐺(ℶℷℷ(5))75 to
user U, it has access to his identity information which can be used to
authorize him, when he requests to have access to a ciphertext. To
achieve full anonymity and make their scheme immune against this
leakage, the authors assumed that each attribute belongs to a category
containing ⊲ possible attribute values. All the attribute values belonging
to the same category are managed by the same authority and each
user has the right to select at most one attribute value in one category.
Upon receiving the key request, the attribute authority picks a random
number 7𝜑 for the user and generates H(ℶℷℷ(5))7𝜑 for all 5 ϱ {1,… , ⊲}.
Using 1-Out-of-k Oblivious Transfer crypto primitive (See Algorithm 2)
user U can request only one attribute value (and not more) from one
set he wants to be issued by the authority.

User Authorization Attacks: the authors assumed ⊲ possible attribute
values for each attribute requested by user U. Then, using 1-Out-of-k
Oblivious Transfer crypto primitive, U asks for just one attribute value
he wants to be issued by the authority. In this approach, a malicious
user may request to have any other attribute value from the same
set, which may not necessarily belong to him. In this way, a non-
eligible user may be authorized by an authority responsible for issuing
attributes anonymously.

Coarse-Grained Access Control: In key generation phase, attribute
authorities collaborate to issue a secret parameter 3 as part of secret
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Algorithm 1 1-out-of-2 Oblivious Transfer
1: Bob randomly picks a secret 6 and publishes 𝜗6 to Alice.
2: Alice creates an encryption/decryption key pair:{𝜗7 , 7}.
3: Alice chooses i and calculates 𝐶𝐾5 = 𝜗7 , 𝐶𝐾5ς1 = 𝜗6

𝜗7 and sends 𝐶𝐾0 to Bob.

4: Bob calculates 𝐶𝐾1 = 𝜗6
𝐶𝐾0

and encrypts 𝐿0 using 𝐶𝐾0 and 𝐿1 using 𝐶𝐾1 and sends
two ciphertexts 𝐶𝐶𝐾0 (𝐿0) and 𝐶𝐶𝐾1 (𝐿1) to Alice.

5: Alice can use 7 to decrypt the desired ciphertext 𝐶𝐶𝐾5 (𝐿5), but she cannot decrypt the
other one. Meanwhile, Bob does not know which ciphertext is decrypted.

Algorithm 2 1-out-of-k Oblivious Transfer
1: Bob randomly picks ⊲ secrets 61 ,… , 6⊲ and calculates ℷ5 as follows:

ϖ5 ϱ {1,… , ℸ} ε ℷ5 = 61 ♮⋜♮ 65ς1 ♮𝐿5

2: For each 5 ϱ {1,… , ⊲}, Bob and Alice are engaged in a 1-out-of-2 Oblivious Transfer (See
Algorithm 1), where Bob’s first message is ℷ5 and the second message is 65. Alice picks
ℷ5, to receive, if she wants 𝐿5 and 65 otherwise.

3: After Alice receives ℸ components, she has ℷ5 = 61 ♮⋜♮65ς1 ♮𝐿5 for the 5 she wants
and 6ℏ for ℏ < 5. Thus, she can recover 𝐿5 by 𝐿5 = ℷ5 ♮ 65ς1 ♮ 65ς2 ♮⋜♮ 61.

key for each user. In encryption phase, 3 is used to compute 𝑈. = 39ς1 .
This means that data owner should use different 3s for different users
to encrypt files restricting the ‘‘fine-grained’’ property of the scheme.

In [21], Jung et al. extended their contribution in [28] and made it
immune against the leakage of master secret key [34]. Similar to [20],
the scheme presented in [21] consists of four algorithms Setup, Key-
Generation, Encryption, and Decryption, in which Setup, Encryption, and
Decryption are similar to the corresponding ones in [20]. KeyGeneration
algorithm is re-defined as follows:

KeyGeneration(𝐷𝐾 ,𝐿𝐾ℶ⊲(1⨋⊲⨋⨌ ),A𝜑): In this algorithm, each author-
ity 11⊲ selects a random parameter ⋆⊲ ϱ Zω

𝜀 , computes ℵ⊲.𝜗(𝛻⊲+⋆⊲)

and shares it with other authorities. Receiving ⨌ ς 1 pieces ℵℏ .𝜗(𝛻ℏ+⋆ℏ )
generated by other authorities 11ℏ(ℏϱ{1,…,⨌ }⟥{⊲}), it computes 3 =
⟨5=1

⨌
ℵ5.𝜗𝛻5+⋆5 = 𝜗

⦃⨌

5=1 𝛻5+⋆5 and sends it to user U. It also privately
sends ℵ⊲.𝜗⋆⊲ to U. For each attribute ℶℷℷ(5) ϱ A𝜑, 11⊲ is respon-
sible for, it selects a random number 75 ϱ7 Zω

𝜀 , computes 𝑂35 =
𝐺(ℶℷℷ(5))75 .ℵ⊲.𝜗⋆⊲ and 3φ

5 = 𝜗75 , and sends them to U. Then, U com-
putes 35 = 𝑂35.

⟨⨌

⊲=1,⊲∲5 ℵ⊲.𝜗
⋆⊲ = 𝐺(ℶℷℷ(5))75 .𝜗

⦃⨌

⊲=1 ⋆⊲ and constructs

his own secret key as 𝐼𝐾𝑍 = {3 = 𝜗
⦃⨌

5=1 𝛻5+⋆5 , ϖ5 ϱ A𝜑 ε (35 =
𝐺(ℶℷℷ(5))75 .𝜗

⦃⨌

⊲=1 ⋆⊲ ,3φ
5 = 𝜗75 )}.

By analyzing the underlying algorithms, we found that the scheme
[21] suffers from the following shortcomings:

User and Authority Collusion Attacks: To generate secret key for
each user, attribute authority 11⊲, for each attribute ℶℷℷ(5) ϱ A𝜑 it
is responsible for, selects random number 75 ϱ7 Zω

8 , computes 𝑈35 =
𝐺(ℶℷℷ(5))75 .ℵ⊲.𝜗⋆⊲ and 3φ

5 = 𝜗75 , and sends them to that user. Let us
assume that attribute ℶℷℷ(ℏ) is issued by malicious authority 11566(ℏ).
Moreover, let us assume that malicious user U is authorized to receive
secret key 𝐼𝐾𝜑 = {3 = 𝜗♭𝛻⊲+⋆⊲ , ϖ5 ϱ A𝜑 ε 35 = 𝐺(ℶℷℷ(5))75 .𝜗♭⋆⊲ ,3φ

5 =
𝜗75}, where ℏ ϱ A𝜑. In collusion between malicious user U and malicious
authority 11566(ℏ), instead of 𝑈3ℏ = 𝐺(ℶℷℷ(ℏ))7ℏ .ℵ566(ℏ).𝜗⋆566(ℏ) , 11566(ℏ) can
send ℵ566(ℏ).𝜗

⋆566(ℏ) to U. In this case, U is able to compute
⟨∱

5=1 ℵ5.𝜗
⋆5 =

𝜗♭⋆5 , and forge any attribute he wants.

Coarse-Grained Access Control: Similarly to [20,28], the scheme
in [21] suffers from coarse-grained access control.

6. System and security models

In this section, first, we present the system model and its architec-
ture. Second, we describe the threat model and security assumptions

Fig. 2. Entities in PACS.

about the entities in that architecture. Third, we present the assump-
tions used to prove the security of the proposed schemes. Next, we
describe the framework of PACS and its functional model. Finally, we
define the security models used for security analysis in Section 8.

6.1. System model

In the architecture considered for PACS, there are four entities (see
Fig. 2): ⨌ Attribute Authorities (115), User (U), Cloud Service Provider
(CSP), and Data Owner (DO). Attribute authorities 115(1⨋5⨋⨌ ) play a
central role, issuing public parameters and generating parts of user
secret keys. Each authority contributes a key component based on
the attributes it manages. A user’s complete secret key is formed by
combining these keys from all relevant authorities. Users U trigger
access requests by transmitting their attributes to the Cloud Service
Provider (CSP). The Data Owner (DO) defines access policies, encrypts
data accordingly, and delegates storage to the cloud. Upon receipt
of a user’s access query, CSP partially decrypts the data based on
the embedded attributes and associated access policies, utilizing CSP-
assisted decryption for improved efficiency and scalability. If user U
is authorized, they can decrypt the received data using their private
keys, ensuring robust data confidentiality and access control. This
architectural model not only safeguards data comprehensively but also
optimizes performance and scalability in cloud environments, thereby
addressing research objectives focused on enhancing privacy, security,
and efficiency in cloud-based data access control. Additionally, dis-
tributing key generation among multiple authorities mitigates single
points of failure and prevents any single authority from possessing the
entire key, making it significantly harder for malicious authorities to
collude and compromise user credentials.

6.2. Threat model

Each attribute authority 115 is in charge of a subset of the users’
attributes and for each attribute, it is responsible for, it knows the exact
information of the key requester (i.e. the user who wants to access the
data). It is assumed that 115 is untrusted in the sense that it will follow
the scheme, but, it may try to collude with users or other authorities
and forge a new key without the involvement of some authorities.
U might be malicious, collude with other users or authorities and
forge his attributes to escalate his rights and get access to services and
information he is not eligible to access. In our architecture, we assume
that CSP is honest but curious. That means that CSP will faithfully
follow the proposed scheme, but can launch passive attacks to get as
much secret information as possible. Hence, the data stored in the cloud
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should remain encrypted all the time and any required transformation
should not reveal the plaintext in the process. We assume that the
policy, by which the data is encrypted, is publicly known and verifiable
by everyone. We also assume that the communication channels are
secure and packets are untraceable when queries and information are
transmitted on these channels. This assumption can be realized using
Secure Socket Layer (SSL) or some other techniques [35].

6.3. Security assumptions

Assumption 1 (Computational Diffie–Hellman (CDH) Assumption). Given
(𝜗, 𝜗ℶ, 𝜗𝑊) ϱ G3, where ℶ and 𝑊 are two random numbers in Zω

𝜀 , there is
no Probabilistic Polynomial Time (PPT) algorithm ⨍ with non-negligible
advantage 𝐸 to compute 𝜗ℶ𝑊.

Assumption 2 (Decisional Bilinear Diffie–Hellman (DBDH) Assumption).
Given (𝜗, 𝜗ℶ, 𝜗𝑊, 𝜗𝐵 ) ϱ G4 and 𝜔 ϱ G𝜔 , where ℶ, 𝑊, 𝐵 are three random
numbers in Zω

𝜀 , there is no PPT algorithm ⨍ with non-negligible
advantage 𝐸 to determine whether 𝜔 is equal to 𝜍(𝜗, 𝜗)ℶ𝑊𝐵 or is a random
number.

6.4. Framework

The framework of PACS is composed of the following six algorithms:

Setup(A,𝑌) ⥳ (𝐷𝐾 ,𝐿𝐾ℶ5(1⨋5⨋⨌ )): The setup algorithm, which is run
by attribute authorities, takes as input the attribute universe A and an
implicit security parameter 𝑌. It outputs public parameters 𝐷𝐾 as well
as master secret key 𝐿𝐾ℶ5 for each attribute authority 115.

KeyGeneration(𝐷𝐾 ,𝐿𝐾ℶ5(1⨋5⨋⨌ ),A𝜑) ⥳ (𝐼𝐾𝑍 ): The key generation
algorithm, which is run by attributes authorities, takes as input pub-
lic parameters 𝐷𝐾, master secret keys 𝐿𝐾ℶ5(1⨋5⨋⨌ ) and user’s set of
attributes A𝜑. It generates secret key 𝐼𝐾𝑍 corresponding to the input
attribute set A𝜑 and returns it as output.

KeyGenOut(𝐷𝐾 ,𝐼𝐾𝑍 , 𝑊) ⥳ (𝐼𝐾1−𝑊
𝑍 ): This algorithm, which is run by

U, takes as input public parameters 𝐷𝐾, user’s secret key 𝐼𝐾𝑍 and a
secret retrieving key 𝑊 known only to U. It returns as output a blinded
secret key 𝐼𝐾1−𝑊

𝑍 , which will be sent to CSP.

Encryption(𝐷𝐾 , ∳ ,𝐿) ⥳ .𝜔 : The encryption algorithm, which is run
by DO, takes as input public parameters 𝐷𝐾, tree access structure ∳ ,
that determines access policy, and message 𝐿 ; it generates ciphertext
.𝜔 as output.

DecryptionOut(𝐷𝐾 ,𝐼𝐾1−𝑊
𝑍 ,A𝜑,.𝜔 ) ⥳ .𝜔 φ: The algorithm, which is

run by CSP, takes as input public parameters 𝐷𝐾, blinded secret key
𝐼𝐾1−𝑊

𝑍 and ciphertext .𝜔 . If attributes A𝜑, associated with U, satisfies
the policy associated with .𝜔 , it computes and returns transformed
ciphertext .𝜔 φ.

Decryption(𝐷𝐾 ,.𝜔 φ, 𝑊) ⥳ 𝐿 : The decryption algorithm, which is run
by U, takes as input public parameters 𝐷𝐾, transformed ciphertext .𝜔 φ

and secret retrieving key 𝑊, and returns message 𝐿 as output.

6.5. Security models

In this section, we define security models for immunity of PACS
against chosen plaintext attacks, users collusion attacks and authorities
collusion attacks. We also provide security definition for anonymizing
user’s identity in the proposed scheme.

6.5.1. Chosen plaintext attacks
The selective security and indistinguishability against Chosen Plain-

text Attacks (IND-CPA) for PACS is defined by the following game
between challenger ⨐ and adversary ⨍:

Initialization. ⨍ declares the set of at most ⨌ ς 1 compromised
authorities that are under its control. The remaining authorities are
controlled by ⨐. ⨍ also commits tree access structure ∳ for the game.

Setup. ⨐ and ⨍ jointly run Setup algorithm to obtain the valid param-
eters.

Learning 1. ⨍ is able to query for an arbitrary number (i.e. 𝜀) of secret
keys corresponding to chosen attribute sets A𝜑1 ,… ,A𝜑𝜀 for selected
number of users {𝑍1,… ,𝑍𝜀}. These attribute sets are disjointly issued
by all authorities, but none of them satisfies tree access structure ∳ . ⨍
is also allowed to query for an arbitrary number (i.e. 8 ς 𝜀) of blinded
secret keys corresponding to attribute sets A𝜑𝜀+1 ,… ,A𝜑8 disjointly is-
sued by all authorities for selected number of users {𝑍𝜀+1,… ,𝑍8}.
Furthermore, ⨍ can conduct an arbitrary number of computations,
using its own (or compromised) secret (or blinded secret) keys, and
all public parameters.

Challenge. ⨍ sends two distinct chosen plaintexts 𝐿0 and 𝐿1 to ⨐.
⨐ randomly selects bit ♯ ϱ {0, 1}, encrypts 𝐿♯ with respect to tree
access structure ∳ and returns the result to ⨍.

Learning 2. ⨍ continues to repeat learning 1 adaptively.

Response. ⨍ outputs guess ♯φ of ♯.

Definition 11. PACS is selective secure and indistinguishable against
chosen plaintext attacks (IND-CPA), if all probabilistic polynomial time
adversaries have only a negligible advantage in the above game. An
adversary is said to have the advantage 𝐸, if it wins the game with
probability 𝐷7[♯φ = ♯] =

⟩
1
2 + 𝐸

⟪

6.5.2. Users collusion attacks
Malicious users may try to collude, combine their secret keys and

obtain a new secret key to increase their privileges [36]. The security
of PACS against Users Collusion Attacks (UCA) can be defined by the
following game:

Initialization. All the authorities are controlled by ⨐. ⨍ commits tree
access structure ∳ for the game.

Setup. ⨐ and ⨍ jointly run Setup algorithm to obtain the valid param-
eters.

Learning 1. ⨍ is able to query for two secret keys 𝐼𝐾𝑍 and 𝐼𝐾𝑍 φ ,
corresponding to two attribute sets A𝜑 and A𝜑φ belonging to two users
𝑍 and 𝑍 φ. These attribute sets do not satisfy ∳ individually, whereas
their union does. More specifically, there is at least one attribute ℶℷℷ(⊲),
issued by an uncompromised authority, in A𝜑 but not in A𝜑φ . ⨍ is also
allowed to conduct an arbitrary number of computations, using its own
(or compromised) secret keys, and all public parameters.

Challenge. ⨍ sends two distinct chosen plaintexts 𝐿0 and 𝐿1 to ⨐. ⨐
randomly selects bit ♯ ϱ {0, 1}, encrypts 𝐿♯ with respect to ∳ and
returns the result to ⨍.

Learning 2. ⨍ continues to repeat its computations adaptively, using
its own (or compromised) secret keys, and all public parameters, similar
to the ones in learning 1.

Response. ⨍ outputs guess ♯φ of ♯.

Definition 12. PACS is secure against Users Collusion Attacks (UCA),
if all probabilistic polynomial time adversaries have only a negligible
advantage in the above game.



Journal of Information Security and Applications 84 (2024) 103823

9

Y. Baseri et al.

6.5.3. Authorities collusion attacks
Malicious authorities may try to collude, combine their master

secret parameters and generate valid master secret parameters for an
uncompromised authority responsible for issuing part of user’s secret
key. To describe the security of PACS against Authorities Collusion
Attacks (ACA), we define the following game:

Initialization. Adversary ⨍ declares the set of compromised authori-
ties that are under its control. The remaining authorities are controlled
by challenger ⨐.⨍ also commits tree access structure ∳ , which includes
at least one attribute issued by an uncompromised authority.

Setup. ⨐ and ⨍ jointly run Setup algorithm to obtain the valid param-
eters.

Learning 1. ⨍ is able to query with the authorities under its control
for an arbitrary number (i.e. 𝜀) of secret keys corresponding to chosen
attribute sets A1,… ,A𝜀 for selected number of users. ⨍ also can con-
duct an arbitrary number of computations, using its own secret keys
(or its own blinded secret keys, which can be computed from its own
secret keys by itself), and all public parameters.

Challenge. ⨍ sends two distinct chosen plaintexts 𝐿0 and 𝐿1 to ⨐. ⨐
randomly selects bit ♯ ϱ {0, 1}, encrypts 𝐿♯ with respect to ∳ (which
includes at least one attribute issued by an uncompromised authority)
and returns the result to ⨍.

Learning 2. ⨍ continues to repeat learning 1 adaptively.

Response. ⨍ outputs guess ♯φ of ♯.

Definition 13. PACS is secure against Authorities Collusion Attacks
(ACA), if all probabilistic polynomial time adversaries have only a
negligible advantage in the above game.

6.5.4. User’s identity anonymization
Assume that the identity of user U is revealed to an attribute

authority, when it issues a part of his secret key. To describe anonymity
of U against honest but curious CSP, while requesting to have access to
a ciphertext, we define the following game between a challenger and
an adversary. The game is constructed to build an identifying blackbox
that can extract identity of user whose blinded secret key has been used
to decrypt ciphertext.

Initialization. adversary ⨍ declares the set of at most ⨌ ς 1 compro-
mised authorities that are under its control. The remaining authorities
are controlled by challenger ⨐. ⨍ also commits tree access structure ∳

for the game.

Setup. ⨐ and ⨍ jointly run Setup algorithm to obtain the valid param-
eters.

Learning 1. ⨍ is able to query for an arbitrary number (i.e. 𝜀) of secret
keys corresponding to chosen attribute sets A𝜑1 ,… ,A𝜑𝜀 for selected
number of users {𝑍1,… ,𝑍𝜀}. These attribute sets are disjointly issued
by all authorities, but none of them satisfies tree access structure ∳ . ⨍
is also allowed to query for an arbitrary number (i.e. 8 ς 𝜀) of blinded
secret keys corresponding to attribute sets A𝜑𝜀+1 ,… ,A𝜑8 disjointly is-
sued by all authorities for selected number of users {𝑍𝜀+1,… ,𝑍8}.
Furthermore, ⨍ can conduct an arbitrary number of computations,
using its own (or compromised) secret (or blinded secret) keys, and
all public parameters.

Challenge ⨍ sends (all or identical parts of) secret keys 𝐼𝐾𝑍0 and
𝐼𝐾𝑍1 of two users 𝑍0 and 𝑍1 to ⨐. ⨐ randomly selects bit ♯ ϱ {0, 1},
computes corresponding components of blinded secret key 𝐼𝐾1−𝑊

𝑍♯
and

returns them to ⨍.

Learning 2. ⨍ continues to repeat learning 1 adaptively.

Response. ⨍ outputs guess ♯φ of ♯.

Definition 14. PACS anonymizes U ’s identity against CSP, if all prob-
abilistic polynomial time adversaries have only a negligible advantage
in the above game.

7. Construction of Privacy-Preserving Access Control Scheme
(PACS)

In this section, we describe the construction of the proposed scheme.
PACS contains six algorithms which are performed in four phases:
setup, key generation, encryption, and decryption.

7.1. Setup phase

In the setup phase, attribute authorities 115(1⨋5⨋⨌ ), perform 𝐼𝜍ℷ𝜑𝜀
algorithm to generate public parameters as well as master secret keys.
In this phase, each attribute authority 11⊲

• Agrees with other authorities on a large prime number 𝜀, where
the size of 𝜀 is dictated by the security parameter 𝑌, a generator
𝜗 for the bilinear group G of order 𝜀, and a public hash function
𝐺 ε {0, 1}ω  G which maps each binary attribute string into a
group element in G. This setup can be processed by one authority
and shared with the others.

• Chooses random secret parameter 𝛻⊲ ϱ Zω
𝜀 and computes 𝜍(𝜗, 𝜗)𝛻⊲

and shares it with all other authorities.
• Selects random integer 6⊲ℏ ϱ Zω

𝜀(ℏ ϱ {1,… ,⨌ } ⟥ {⊲}), computes
𝜗6⊲ℏ and shares it with authority 11ℏ (ϖℏ ϱ {1,… ,⨌ } ⟥ {⊲}).

• Receives ⨌ ς 1 pieces of 𝜗6ℏ⊲ and 𝜍(𝜗, 𝜗)𝛻ℏ generated by other
authorities 11ℏ (ℏ ϱ {1,… ,⨌ } ⟥ {⊲}). It selects random exponent
⌣⊲ ϱ Zω

𝜀 , computes ⌢⊲ = 𝜗⌣⊲ and ℏ = ⟨
5ϱ{1,…,⨌ } 𝜍(𝜗, 𝜗)𝛻5 =

𝜍(𝜗, 𝜗)
⦃⨌

5=1 𝛻5 and publishes ⌢⊲ and ℏ as authorities’ public parame-
ters. Aggregating authorities’ public parameters constructs public
parameters 𝐷𝐾 = (G, 𝜗, ℏ = 𝜍(𝜗, 𝜗)

⦃⨌

5=1 𝛻5 , ⌢5 = 𝜗⌣5 (1 ⨋ 5 ⨋ ⨌ ),𝐺(.)).
• Computes authority secret key ℵ⊲ ϱ Zω

𝜀 as follows:

ℵ⊲ =
⟩ ⟫

ℏϱ{1,…,⨌ }⟥{⊲}
𝜗6⊲ℏ

⟪/⟩ ⟫

ℏϱ{1,…,⨌ }⟥{⊲}
𝜗6ℏ⊲

⟪

= 𝜗

⟩⦃
ℏϱ{1,…,⨌ }⟥{⊲} 𝜗

6⊲ℏ ς⦃ℏϱ{1,…,⨌ }⟥{⊲} 𝜗
6ℏ⊲

⟪

Then, the master secret key for attribute authority 11⊲ would
be 𝐿𝐾ℶ⊲ = (𝛻⊲, ⌣⊲, ℵ⊲). It can be observed that randomly pro-
duced integers ℵ⊲, where ⊲ ϱ {1,… ,⨌ }, satisfy the condition⟨

⊲ϱ{1,…,⨌ } ℵ⊲ = 1 ⊳,⋆ 𝜀.

7.2. Key generation phase

In the key generation phase, attribute authorities 115(1⨋5⨋⨌ ) col-
laborate to perform 𝐾𝜍4>𝜍ℸ𝜍7ℶℷ5,ℸ algorithm and issue secret key for
each user. Then, a typical user U performs 𝐾𝜍4>𝜍ℸ0𝜑ℷ to anonymize his
secret key and sends his access request to CSP. It is worth noting that
for PACS, similar to the traditional ABE approach, we only consider
attributes (i.e., user either possesses an attribute or not) and not the
values of these attributes. To perform 𝐾𝜍4>𝜍ℸ𝜍7ℶℷ5,ℸ, each attribute
authority 11⊲

• Selects random number ⋆⊲ ϱ Zω
𝜀 , computes ℵ⊲.𝜗

⋆⊲ and ℵ⊲.𝜗(𝛻⊲+⋆⊲),
and shares them with all other authorities 115(5 ϱ {1,… ,⨌ }
⟥ {⊲}).

• Receives ⨌ ς 1 pieces of ℵ⊲.𝜗⋆⊲ and ℵ5.𝜗(𝛻5+⋆5) generated by
115(5 ϱ {1,… ,⨌ } ⟥ {⊲}).

• Computes 3
♭⋆5

= ⟨5=1
⨌

ℵ5.𝜗⋆5 = 𝜗
⦃⨌

5=1 ⋆5 and 3 = ⟨⨌

5=1 ℵ5.𝜗
(𝛻5+⋆5) =

𝜗
⦃⨌

5=1(𝛻5+⋆5), and sends 3 to user U.
• Chooses random number 7ℏ ϱ7 Zω

8 for each attribute ℶℷℷ(ℏ) ϱ A𝜑,

computes 3ℏ = 3(1−⌣⊲)
♭⋆5

(𝐺(ℶℷℷ(ℏ)))7ℏ = 𝜗(
⦃⨌

5=1 ⋆5−⌣⊲)(𝐺(ℶℷℷ(ℏ)))7ℏ and
3φ

ℏ = 𝜗7ℏ and sends them to user U.
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To perform 𝐾𝜍4>𝜍ℸ0𝜑ℷ, user U

• Chooses random number 𝑊 ϱ Zω
𝜀 (𝑊 > 1) as secret retrieving key

𝜕𝐾𝑍 and transforms secret key 𝐼𝐾𝑍 =
⟩
3, ϖℏ ϱ A𝜑 ε (3ℏ ,3φ

ℏ )
⟪

to its blinded version. This is performed by raising its
components to the power of 1−𝑊, denoted by
𝐼𝐾1−𝑊

𝑍 =
\
31−𝑊, ϖℏ ϱ A𝜑 ε (31−𝑊

ℏ ,3
φ1−𝑊
ℏ )

⟪
.

7.3. Encryption phase

In the encryption phase, data owner DO performs 𝐶ℸ𝐵74𝜀ℷ5,ℸ algo-
rithm to define access policy and encrypt data based on that policy. In
this process, DO

• Defines access control policy for all attributes.
• Selects random number 6 in Zω

𝜀 and computes 𝐶 =
𝐿 .𝜍(𝜗, 𝜗)

⦃⨌

5=1 𝛻56.
• Shares secret 6 in tree access structure ∳ with root 𝜕. In a top-
down approach, it chooses polynomial 8ℵ for each node ℵ in tree
access structure ∳ as follows: For each node ℵ, the algorithm
sets degree ⋆ℵ of polynomial 8ℵ to ⊲ℵ ς 1 where ⊲ℵ is the thresh-
old value of node ℵ. Starting from root node 𝜕, the algorithm
sets 8𝜕(0) = 6 and randomly chooses ⋆𝜕 other coefficients to
define 8𝜕 completely. For any other node ℵ, it sets 8ℵ(0) =
8𝜀ℶ7𝜍ℸℷ(ℵ)(5ℸ⋆𝜍ℵ(ℵ))1 and chooses ⋆ℵ other coefficients randomly to
completely define 8ℵ. Note that each leaf node 4 is associated with
atomic attribute ℶℷℷ(4) in the set of attributes.

• Uploads ciphertext .𝜔 =
⟩
𝐶 = 𝐿 .𝜍(𝜗, 𝜗)

⦃⨌

5=1 𝛻56,. = 𝜗6,ϖ4 ϱ A∳ ε

(.4 = ⌢
84(0)
566(4) = 𝜗(⌣566(4) 84(0)),2 . φ

4 = 𝐺(ℶℷℷ(4))84(0))
⟪
to CSP.

In order to adopt the key encapsulation mechanism and reduce the size
of ciphertext without sacrificing security [37], instead of computing
𝐿 .𝜍(𝜗, 𝜗)

⦃⨌

5=1 𝛻56 for plaintext 𝐿 , DO selects random content key .𝐾
and computes .𝐾 .𝜍(𝜗, 𝜗)

⦃⨌

5=1 𝛻56. It uses the content key .𝐾 to encrypt
the target file (i.e., the file we want to encrypt and for which we define
access control) with symmetric encryption 𝐶2..𝐾 (.).

7.4. Decryption phase

During the decryption phase, user U initiates the process by sending
an access request to the CSP. This request includes the user’s blinded
secret key 𝐼𝐾1−𝑊

𝑍 = (31−𝑊,ϖℏ ϱ A𝜑 ε (31−𝑊
ℏ ,3

φ1−𝑊
ℏ )). Upon receiving

the access request, CSP performs 3𝜍𝐵74𝜀ℷ5,ℸ0𝜑ℷ algorithm to check the
eligibility of the user, outsource the computation cost and partially
decrypt the ciphertext. Then, U performs 3𝜍𝐵74𝜀ℷ5,ℸ algorithm to have
access to the corresponding plaintext.

To perform 3𝜍𝐵74𝜀ℷ5,ℸ0𝜑ℷ, CSP

• Computes 3𝜍𝐵2,⋆𝜍(4) =
𝜍(31−𝑊

ℏ ,.4)

𝜍(3φ1−𝑊
ℏ ,.φ

4)
= 𝜍(𝜗, 𝜗)(

⦃⨌

5=1 ⋆5).84(0)−𝑊 for each

leaf node 4 in tree access structure ∳ and corresponding attribute
ℶℷℷ(ℏ) ϱ A𝜑.

• Recursively, computes 1 as 3𝜍𝐵2,⋆𝜍(𝜕) for the root node 𝜕
of ∳ as follows: For each non-leaf node ℵ, the algorithm calls
3𝜍𝐵2,⋆𝜍(𝑎) for all child nodes 𝑎 of ℵ and stores the output as
𝑏𝑎. Let 𝐼ℵ be an arbitrary ⊲ℵ-sized set of child nodes 𝑎. The
computation of 3𝜍𝐵2,⋆𝜍(ℵ) is as follows:

𝑏ℵ = 𝑐𝑎ϱ𝐼ℵ
𝑏

𝑃𝑑,𝐼φℵ
(0)

𝑎 , 𝑒9𝜍7𝜍
(

𝑑 = 5ℸ⋆𝜍ℵ(𝑎)
𝐼φ
ℵ = {𝑑 ε 𝑎 ϱ 𝐼ℵ}

= 𝑐𝑎ϱ𝐼ℵ

⟩
𝜍(𝜗, 𝜗)(

⦃⨌

5=1 ⋆5).8𝑎(0)−𝑊
⟪𝑃𝑑,𝐼φℵ

(0)

1 𝜀ℶ7𝜍ℸℷ(ℵ) is the node ℵ’s parent node and 5ℸ⋆𝜍ℵ(ℵ) is a number associated
with each node ℵ ranging from 1 to ℸ𝜑⊳𝜀ℶ7𝜍ℸℷ(ℵ).

2 566(4) is the authority responsible for issuing ℶℷℷ(4).

= 𝑐𝑎ϱ𝐼ℵ

⟩
𝜍(𝜗, 𝜗)(

⦃⨌

5=1 ⋆5).8𝑎(0)
⟪𝑃𝑑,𝐼φℵ

(0)−𝑊

= 𝑐𝑎ϱ𝐼ℵ

⟩
𝜍(𝜗, 𝜗)(

⦃⨌

5=1 ⋆5).8𝜀ℶ7𝜍ℸℷ(𝑎)(𝑑)
⟪𝑃𝑑,𝐼φℵ

(0)−𝑊
(𝛻5ℶ 𝐵,ℸ6ℷ7𝜑𝐵ℷ5,ℸ)

= 𝑐𝑎ϱ𝐼ℵ
𝜍(𝜗, 𝜗)(

⦃⨌

5=1 ⋆5).8ℵ(𝑑).𝑃𝑑,𝐼φℵ (0)−𝑊

= 𝜍(𝜗, 𝜗)(
⦃⨌

5=1 ⋆5).8ℵ(0)−𝑊(𝜑65ℸ𝜗 𝜀,≨4ℸ,⊳5ℶ≨ 5ℸℷ𝜍7𝜀,≨ℶℷ5,ℸ)

where 𝑃𝑑,𝐼φ
ℵ
(0) is the Lagrange coefficient, which is defined as

𝑃𝑑,𝐼φ
ℵ
(ℵ) = 𝑐ℏϱ𝐼φ

ℵ ,ℏ∲𝑑,
ℵςℏ
𝑑,ςℏ [29]. The starts by calling the function

3𝜍𝐵2,⋆𝜍(.) for the root node 𝜕 of the tree access structure ∳ .
If the tree access structure is satisfied by A𝜑, then 1, which
is set to 3𝜍𝐵2,⋆𝜍(𝜕), becomes equal to 𝜍(𝜗, 𝜗)

⦃⨌

5=1 ⋆5 .8𝜕(0)−𝑊 =
𝜍(𝜗, 𝜗)

⦃⨌

5=1 ⋆5 .6−𝑊.

• Computes the expression 𝜍(. ,31−𝑊)
1 = 𝜍(𝜗,𝜗)

⦃⨌

5=1(𝛻5+⋆5 )6−𝑊

𝜍(𝜗,𝜗)
⦃⨌

5=1 ⋆5 .6−𝑊
=

𝜍(𝜗, 𝜗)
⦃⨌

5=1 𝛻56−𝑊. Simplifying this expression results in the blinded

plaintext 𝐿1−𝑊, since 𝜍(𝜗, 𝜗)
⦃⨌

5=1 𝛻56−𝑊 =
⟩
𝜍(𝜗, 𝜗)

⦃⨌

5=1 𝛻56
⟪1−𝑊

= 𝐿1−𝑊.
It is important to note that in this calculation, we do not need
to compute the actual value of 𝐿 . Instead, we directly obtain
𝐿1−𝑊. This approach not only achieves the desired result but also
protects the value of 𝐿 from disclosure to the CSP. Finally, the
CSP sends 𝐿1−𝑊 to the user.

To perform 3𝜍𝐵74𝜀ℷ5,ℸ, user U

• Computes plaintext 𝐿 by raising received 𝐿1−𝑊 to the power 𝑊
selected in key generation phase.

8. Security discussion

In this section, we analyze the security of the proposed scheme.
The analysis includes considering immunity of PACS against authorities
collusion attacks, users collusion attacks and chosen plaintext attacks.
It also discusses how PACS anonymizes user’s identity.

Theorem 1 (Security Against Authorities Collusion Attacks). PACS is
secure against compromised authorities.

Proof. An adversary, using the help of malicious authorities, may try to
compromise, generate valid master secret parameters and obtain a new
secret key applicable in decryption process. Let 𝐸 be the probability of
compromising each authority. Associating different secret random ele-
ments ⌣⊲(1⨋⊲⨋⨌ ) with different authorities 11⊲(1⨋⊲⨋⨌ ) and constructing
separate 𝜗(

⦃⨌

5=1 ⋆5−⌣⊲) for each authority prevent applying one authority’s
shares of secrets (i.e. 𝛻⊲ and ⋆⊲) to the others. Thus, the probability
of compromising authorities and breaking the security of PACS (via
authorities collusion attacks) is
⨌)

5=⨌

❲
⨌

5

❳
𝐸5(1 ς 𝐸)⨌ς5 = 𝐸⨌ ,

which is negligible. ⋛

Malicious users may try to collude, combine their secret keys and
obtain a new secret key to increase their privileges. The security of
PACS against Users Collusion Attacks (UCA) can be proved based on the
following lemma:

Lemma 1. Under Computational Diffie–Hellman (CDH) assumption,
there is no PPT algorithm ⨍ with non-negligible advantage to derive
𝜗
⦃⨌

5=1 ⋆5,𝜑−⌣566(⊲) or (𝐺(ℶℷℷ(⊲)))7⊲,𝜑 (for any ℶℷℷ(⊲)) from user’s secret key
𝐼𝐾

𝑍
=
\
𝜗
⦃⨌

5=1(𝛻5+⋆5,𝜑), ϖℏ ϱ A𝜑 ε (𝜗
⦃⨌

5=1 ⋆5,𝜑−⌣566(ℏ) (𝐺(ℶℷℷ(ℏ)))7ℏ,𝜑 , 𝜗7ℏ,𝜑 )
⦅
.

Proof. Let ⨍ be a PPT algorithm that solves the problem of deriving
𝜗
⦃⨌

5=1 ⋆5,𝜑−⌣566(⊲) or (𝐺(ℶℷℷ(⊲)))7⊲,𝜑 for some ℶℷℷ(⊲) from user’s secret key
𝐼𝐾

𝑍
=
\
𝜗
⦃⨌

5=1(𝛻5+⋆5,𝜑), ϖℏ ϱ A𝜑 ε (𝜗
⦃⨌

5=1 ⋆5,𝜑−⌣566(ℏ) (𝐺(ℶℷℷ(ℏ)))7ℏ,𝜑 , 𝜗7ℏ,𝜑 )
⦅
.



Journal of Information Security and Applications 84 (2024) 103823

11

Y. Baseri et al.

Let 𝜗d = 𝜗
⦃⨌

5=1(𝛻5+⋆5,𝜑), 𝜗r566(⊲) = 𝜗
⦃⨌

5=1 ⋆5,𝜑−⌣566(⊲) ,ϖℏ ϱ A𝜑 ε 𝜗hℏ = 𝐺(ℶℷℷ(ℏ)).
Thus, the problem is equivalent to extract (𝜗r566(⊲) , 𝜗h⊲7⊲,𝜑 ) from 𝐼𝐾

𝑍
=
\

𝜗d, ϖℏ ϱ A𝜑 ε (𝜗r566(ℏ)+hℏ 7ℏ,𝜑 , 𝜗7ℏ,𝜑 )
⦅
for some ℶℷℷ(⊲). Since unknown

parameters d and 7ℏ,𝜑(ϖℏ ∲ ⊲) are not related to the problem and since
𝜗 and 𝐺(ℶℷℷ(⊲)) = 𝜗h⊲ are publicly known, the above problem can be
reduced to finding (𝜗r566(⊲) , 𝜗h⊲7⊲,𝜑 ) from (𝜗, 𝜗h⊲ , 𝜗r566(⊲)+h⊲7⊲,𝜑 , 𝜗7⊲,𝜑 ).

Let us assume that there exists PPT algorithm ⨍
φ with non-

negligible advantage to extract (𝜗r566(⊲) , 𝜗h⊲7⊲,𝜑 ) from (𝜗, 𝜗h⊲ , 𝜗r566(⊲)+h⊲7⊲,𝜑 ,
𝜗7⊲,𝜑 ). We show in the following that we can construct PPT algorithm ⨑

with non-negligible advantage to solve CDH problem (𝜗1, 𝜗ℶ1 , 𝜗
𝑊
1)  𝜗ℶ𝑊1 .

⨑ selects random integer 𝐵 and sends (𝜗 = 𝜗1, 𝜗h⊲ = 𝜗𝑊1, 𝜗
r566(⊲)+h⊲7⊲,𝜑 =

𝜗𝐵1 , 𝜗
7⊲,𝜑 = 𝜗ℶ1) as input to ⨍

φ. Upon receiving the corresponding output
(𝜕1,𝜕2), ⨑ checks whether 𝜕1.𝜕2 = 𝜗𝐵1 and 𝜍(𝜗1,𝜕2) = 𝜍(𝜗ℶ1 , 𝜗

𝑊
1). If the

response is yes, it returns 𝜕2. Otherwise, it selects another random
𝐵 and invokes ⨍ using the new input (𝜗1, 𝜗𝑊2 , 𝜗

𝐵
1 , 𝜗

ℶ
1). Since ℶ = 7⊲,𝜑,

𝜗h⊲7⊲,𝜑 = (𝜗𝑊1)
ℶ = 𝜕2, 𝜍(𝜗1,𝜕2) = 𝜍(𝜗1, 𝜗ℶ𝑊1 ) = 𝜍(𝜗ℶ1 , 𝜗

𝑊
1) and 𝜗𝐵1 =

𝜗r566(⊲)+h⊲7⊲,𝜑 = 𝜕1𝜕2, ⨑ returns a valid answer. Thus, we are able
to construct PPT algorithm ⨑ that can solve the CDH problem with
non-negligible advantage. ⋛

Theorem 2 (Security Against Users Collusion Attacks). PACS is secure
against users collusion attacks under CDH assumption.

Proof. Assume that malicious users Uφ and U collude, attempting to
combine their secret keys, transfer U ’s attributes to Uφ and obtain more
privileges. Based on prior knowledge of

𝐼𝐾
𝑍
= (3

𝑍
,ϖℏ ϱ A𝜑 ε (3ℏ,𝑍 ,3

φ
ℏ,𝑍

))

= (𝜗
⦃⨌

5=1(𝛻5+⋆5,𝜑),ϖℏ ε (𝜗
⦃⨌

5=1 ⋆5,𝜑−⌣566(ℏ) (𝐺(ℶℷℷ(ℏ)))7ℏ,𝜑 , 𝜗7ℏ,𝜑 ))

and

𝐼𝐾
𝑍 φ = (3

𝑍 φ ,ϖℏ ϱ A𝜑φ ε (3ℏ,𝑍 φ ,3
φ
ℏ,𝑍 φ ))

= (𝜗
⦃⨌

5=1(𝛻5+⋆5,𝜑φ ),ϖℏ ε (𝜗
⦃⨌

5=1 ⋆5,𝜑φ −⌣566(ℏ) (𝐺(ℶℷℷ(ℏ)))7ℏ,φ𝜑 , 𝜗7ℏ,𝜑φ )),

the only possible approach for Uφ to construct a new secret key
is to exchange 𝜗

⦃⨌

5=1 ⋆5,𝜑φ −⌣566(ℏ) or (𝐺(ℶℷℷ(ℏ)))7ℏ,𝜑φ with 𝜗
⦃⨌

5=1 ⋆5,𝜑−⌣566(ℏ) or
(𝐺(ℶℷℷ(ℏ)))7ℏ,𝜑 over some attribute ℶℷℷ(ℏ); according to Lemma 1, under
CDH assumption, user Uφ cannot extract 𝜗

⦃⨌

5=1 ⋆5,𝜑φ −⌣566(ℏ) or (𝐺(ℶℷℷ(ℏ)))7ℏ,𝜑φ
components from his secret key and exchange it with the corresponding
component of U ’s secret key. ⋛

Theorem 3 (Security Against Chosen Plaintext Attacks). Under Decisional
Bilinear Diffie–Hellman (DBDH) assumption, PACS is selective secure and
indistinguishable against chosen plaintext attacks (IND-CPA).

Proof. Let ⨍ be a PPT algorithm that can break the security of PACS in
selective secure CPA model. Let (>,>ℶ,>𝑊,>𝐵 )  𝜍(>,>)ℶ𝑊𝐵 be a DBDH
problem. We show that if adversary ⨍ has non-negligible advantage
𝐸 in IND-CPA game (see Section 6.5), then, we can construct PPT
algorithm ⨑ to solve DBDH problem with non-negligible advantage 𝐸

2
as follows:

Let ⨐ be a challenger corresponding to DBDH problem. ⨐ flips coin
𝑓. if 𝑓 = 0, it sets (𝜗,1,𝑋,. ,𝑔) = (𝜗, 𝜗ℶ, 𝜗𝑊, 𝜗𝐵 , 𝜍(𝜗, 𝜗)ℶ𝑊𝐵 ), where ℶ, 𝑊,
𝐵 are chosen randomly; otherwise, it sets 𝑔 randomly. Next, ⨐ gives
(𝜗,1,𝑋,. ,𝑔) to simulator ⨑. ⨑ plays the role of challenger in the
following game:

Initialization. ⨍ controls the set of compromised authorities 115⊲
(⊲ ϱ {1,… , 𝑉

⨌ }) containing at most ⨌ ς 1 authorities. The
remaining authorities 115⊲ (⊲ ϱ { 𝑉

⨌ + 1,… ,⨌ }) are controlled
by ⨑. ⨍ also commits tree access structure ∳ wanted to be
challenged in which some attributes are issued by ⨍’s authorities
and the remaining by ⨑.

Setup. Without knowing the actual value of⦃⨌

5=1 𝛻5 and
⦃⨌

5=1 ⋆5, ⨑ sets
ℶ = ⦃⨌

5=1 ⋆5, 𝑊 = ⦃⨌

5=1 𝛻5−
⦃⨌

5=1 ⋆5, 𝐵 = 6, where
⦃⨌

5=1 𝛻5,
⦃⨌

5=1 ⋆5

and 6 are chosen randomly.3 Then, it computes ℏ = 𝜍(1,𝑋) =
𝜍(𝜗, 𝜗)

⦃⨌

5=1 𝛻5 . It selects random elements ⌣5( 𝑉
⨌ + 1 ⨋ 5 ⨋ ⨌ ) and

sets ⌢5 = 𝜗⌣5 ( 𝑉
⨌ + 1 ⨋ 5 ⨋ ⨌ ). Meanwhile, ⨍ selects random

elements ⌣5(1 ⨋ 5 ⨋ 𝑉
⨌ ) and sets ⌢5 = 𝜗⌣5 (1 ⨋ 5 ⨋ 𝑉

⨌ ). Then, they
publish public parameters 𝐷𝐾 = (𝛚, 𝜗, ℏ , ⌢5(1 ⨋ 5 ⨋ ⨌ ),𝐺(.)).

Learning 1. ⨍ is allowed to have access to an arbitrary number (i.e. 𝜀)
of secret keys corresponding to chosen attribute sets A𝜑1 ,… ,A𝜑𝜀
for a selected number of users {𝑍1,… ,𝑍𝜀}. These attribute sets
are disjointly issued by all authorities 115(5 ϱ {1,… ,⨌ }), but
none of them satisfies tree access structure ∳ . For each at-
tribute ℏ, issued by an uncompromised authority 115⊲ (⊲ ϱ
{ 𝑉
⨌ + 1,… ,⨌ }), ⨑ randomly picks 7ℏ and computes 3ℏ =
1(1−⌣566(ℏ))(𝐺(ℶℷℷ(ℏ)))7ℏ and 3φ

ℏ = 𝜗7ℏ . Then, it returns its own part
of secret key to ⨍. ⨍ is also allowed to compute its own part
of secret key (i.e. ϖℏ 566𝜑𝜍⋆ 𝑊4 115⊲ (⊲ ϱ {1,… , 𝑉

⨌ }) ε (3ℏ ,3φ
ℏ )),

conduct an arbitrary number of computations, using its own
(or compromised) secret keys and all public parameters. ⨍ is
also allowed to query for an arbitrary number (i.e. 8 ς 𝜀) of
blinded secret keys corresponding to attribute sets A𝜑𝜀+1 ,… ,A𝜑8
for selected number of users {𝑍𝜀+1,… ,𝑍8}. These attribute sets
are also disjointly issued by all authorities 115(5 ϱ {1,… ,⨌ }).
In response to a query for blinded secret key for attribute set
A𝜑5 , ⨑ chooses random components 𝜛, 7, ⌣5 ϖ 5 ϱ {1,… ,⨌ }, 𝑈7ℏ
ϖ ℏ ϱ ℶℷℷ75𝑊𝜑ℷ𝜍6, and sets 𝐼𝐾1−𝑊

𝑍5
=
\

31−𝑊 = 𝜗𝜛𝜗7, ϖℏ ϱ A𝜑5 ε

31−𝑊
ℏ = 𝜗7−⌣566(ℏ) (𝐺(ℶℷℷ(ℏ)))𝑈7ℏ , 3

φ1−𝑊
ℏ = 𝜗𝑈7ℏ

⦅
.4 If ⨑ has already

received the same query for the same attribute set, it does not
compute blinded secret key repeatedly; but, instead it uses the
previous computation. Then, it returns the corresponding blinded
secret key to ⨍.

Challenge. ⨍ sends two distinct chosen plaintexts 𝐿0 and 𝐿1 to the
challenger. The challenger randomly selects bit ♯ ϱ {0, 1} and
returns ciphertext .𝜔 ω = (𝐿♯ .𝑔, . ,ϖ4 ϱ A𝜑 ε .4, . φ

4) to ⨍.
If 𝑓 = 0, 𝑔 = 𝜍(𝜗, 𝜗)ℶ𝑊𝐵 , where ℶ = ⦃⨌

5=1 ⋆5, 𝑊 = ⦃⨌

5=1 𝛻5−
⦃⨌

5=1 ⋆5
and 𝐵 = 6. Therefore, 𝑔 = 𝜍(𝜗, 𝜗)𝜛6 and .𝜔 ω is a valid ciphertext
of 𝐿♯ . Otherwise, if 𝑓 = 1, 𝑔 is a random element and 𝐿♯ .𝑔
does not contain any information about 𝐿♯ .

Learning 2. ⨍ continues to repeat learning 1 adaptively.

Response. ⨍ submits guess ♯φ of ♯. If ♯φ = ♯, ⨑ outputs 𝑓φ = 0 indi-
cating that ⨍ returned back a valid DBDH -tuple (𝜗,1,𝑋,. ,𝑔) =
(𝜗, 𝜗

⦃⨌

5=1 ⋆5 , 𝜗
⦃⨌

5=1 𝛻5−
⦃⨌

5=1 ⋆5 , 𝜗6, 𝜍(𝜗, 𝜗)
⦃⨌

5=1 𝛻56). Otherwise, ⨑ outputs
𝑓φ = 1 indicating that ⨍ returned back a random tuple
(𝜗,1,𝑋,. ,𝑔).
When 𝑓 = 0, ⨍ gets a valid ciphertext of 𝐿♯ . Since the
advantage of adversary ⨍ is 𝐸 by definition, the probability of
correctly guessing ♯φ of ♯ is 𝐷7[♯φ = ♯⌋𝑓 = 0] = 1

2 +
𝐸. If ♯φ = ♯, ⨑ outputs 𝑓φ = 0. Thus, we have 𝐷7[𝑓φ =
𝑓⌋𝑓 = 0] = 𝐷7[♯φ = ♯⌋𝑓 = 0] = 1

2 + 𝐸. When 𝑓 = 1, ⨍

has no information about ♯. In this case, we have 𝐷7[♯φ
∲

♯⌋𝑓 = 1] = 𝐷7[♯φ = ♯⌋𝑓 = 1] = 1
2 . If ♯

φ
∲ ♯, ⨑ outputs 𝑓φ = 1.

So, we have 𝐷7[𝑓φ = 𝑓⌋𝑓 = 1] = 𝐷7[♯φ
∲ ♯⌋𝑓 = 1] = 1

2 . Hence,
the overall advantage in this game is:

𝐷7[𝑓φ = 𝑓] ς 1
2 = 𝐷7[𝑓φ = 𝑓⌋𝑓 = 1] + 𝐷7[𝑓φ = 𝑓⌋𝑓 = 0] ς 1

2
= 1

2 ϑ ( 12 + 𝐸) + 1
2 ϑ 1

2 ς 1
2 = 𝐸

2

3 Since
⦃⨌

5=1 𝛻5 and
⦃⨌

5=1 ⋆5 are partially selected by uncompromised author-
ities 115⊲ (⊲ ϱ { 𝑉

⨌ + 1,… ,⨌ }), their randomly assigning does not affect the
duty of compromised authorities 115⊲ (⊲ ϱ {1,… , 𝑉

⨌ }), to assign 𝛻5⊲ and ⋆5⊲
(⊲ ϱ {1,… , 𝑉

⨌ }), which are under the control of ⨍.
4 Note that ⨑ does not know the actual retrieving key 𝑊 = ⦃⨌

5=1 𝛻5−𝜛.
Consequently, it cannot deduce 7 = ⦃⨌

5=1 ⋆5−𝑊 and ϖℏ ϱ A𝜑5 ε 𝜗(7−⌣566(ℏ) ) =
𝜗(

⦃⨌

5=1 ⋆5−𝑊⌣566(ℏ) ), 𝜗7ℏ = 𝜗𝑈7ℏ−𝑊.
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Thus, we are able to construct PPT algorithm ⨑ that can solve the DBDH
problem with advantage 𝐸

2 . ⋛

Theorem 4 (Anonymizing User Identity). Assume that the identity of user
U is revealed to an attribute authority while it issues part of his secret
key (i.e. 𝐼𝐾𝑍 ). Under CDH, PACS anonymizes U’s identity, even if the
adversary compromises all authorities.

Proof. Let ⨍ be a PPT algorithm that can derive the identity of
user U while requesting to access a file. More specifically, without
knowing secret retrieving key 𝑊, ⨍ would be able to extract some
parameter 𝐷 in user 𝑍 ’s secret key 𝐼𝐾

𝑍
=
\

𝜗
⦃⨌

5=1(𝛻5+⋆5,𝜑), ϖℏ ϱ
A𝜑 ε (𝜗

⦃⨌

5=1 ⋆5,𝜑−⌣566(ℏ) (𝐺(ℶℷℷ(ℏ)))7ℏ,𝜑 , 𝜗7ℏ,𝜑 )
⦅
from corresponding 𝐷 1−𝑊 in

𝐼𝐾1−𝑊
𝑍 =

\
𝜗
⦃⨌

5=1(𝛻5+⋆5,𝜑−𝑊), ϖℏ ϱ A𝜑 ε (𝜗
⦃⨌

5=1 ⋆5,𝜑−⌣566(ℏ)𝑊(𝐺(ℶℷℷ(ℏ)))7ℏ,𝜑−𝑊,
𝜗7ℏ,𝜑−𝑊)

⦅
. We show that if ⨍ has non-negligible advantage to extract

𝐷 from 𝐷 1−𝑊, we can construct PPT algorithm ⨑ with non-negligible
advantage to solve CDH problem (𝜗1, 𝜗 𝑈a

1 , 𝜗
𝑈b
1 )  𝜗 𝑈a 𝑈b

1 .
To achieve this goal, ⨑ sets 𝜗 = 𝜗1 and 𝐷 1−𝑊 = 𝜗 𝑈a

1 , where 𝑊 = 𝑈b. Then,
it sends 𝐷 1−𝑊 as input to ⨍. Note that ⨑ does not know the actual value
of 𝑈b. Upon receiving the corresponding output 𝐷 , without changing
anything, ⨑ transfers it as its own output. ⋛

9. SPACS: Statistical Privacy-Preserving Access Control Scheme

As described in Section 4, the statistical analysis of the combination
of attributes belonging to the quasi-identifier of users can be used to re-
identify them. In PACS, when a user sends his request to have access
to a ciphertext encrypted and stored in the cloud, the adversary, with
the help of malicious CSP, can access the set of attributes belonging
to the quasi-identifier of the user and re-identify him. In this sec-
tion, aiming to provide anonymity of users against statistical analysis
of their attributes, we propose an extension of PACS, called SPACS,
which supports ∱-anonymity of users without trusting authorities or
providers. Since supporting ∱-anonymity of users against statistical
analysis of attributes requires issuing at least ∱ possible values for
the combination of attributes belonging to quasi-identifier of users,
we assume that each attribute ℶℷℷ(5) included in quasi-identifier of
users (e.g. ℶℷℷ(5) = >𝜍ℸ⋆𝜍7) takes its value 𝛻ℶℷℷ(5) from a set (an
equivalence class of anonymity) of at least ∱5 possible attribute values
𝛻ℶℷℷ(5) ϱ {𝛻ℏ (5)}1⨋ℏ⨋∱5 ,∱⨋∱5

(e.g. 𝛻ℶℷℷ(5) ϱ {⊳ℶ≨𝜍, 𝐴𝜍⊳ℶ≨𝜍}). Each attribute
authority issues just one attribute value for each user attribute it
is responsible for. Later on, users send their queries including their
attributes (not attribute values), authorized by authorities, to CSP. In
encryption process, based on attribute values DO considers for each
attribute, he encrypts plaintext 𝐿 and uploads it to the cloud server.
Ideally, different attribute values would be encrypted using separate
tree access structures. However, to minimize computational overhead,
DO constructs a single tree access structure in which different attribute
values 𝛻ℏ (ℵ) are assigned to a leaf node associated with attribute ℶℷℷ(ℵ).
This allows DO to compute different . φ5ℏ corresponding to the various
attribute values 𝛻ℏ (ℵ), streamlining the encryption process. We assume
that the policy along with different attribute values used to encrypt
𝐿 are publicly accessible; this allows user U to check whether he is
eligible to access M or not. Based on the defined policy embedded in
ciphertext, U sends his blinded request to CSP. CSP receives the list of
attributes (not the values) and blinded secret key of U. It calculates
all possible blinded ciphertexts .𝜔 φs and sends them back to U. U
verifies the outsourced computations of blinded ciphertexts; if the
verification passes for one .𝜔 φ, U would be able to un-blind it and have
access to plaintext 𝐿 embedded in ciphertext. This verification can be
done using commitment techniques similar to the techniques described
in [38,39]. We can describe the framework of SPACS by the following
six algorithms. Similar to PACS, these algorithms are performed in four
phases: setup, key generation, encryption, and decryption.

Setup (A,𝑌) ⥳ (𝐷𝐾 ,𝐿𝐾ℶ5(1⨋5⨋⨌ )): Similar to PACS, attribute author-
ities collaborate to construct 11⊲’s master key 𝐿𝐾ℶ⊲ = (𝛻⊲, ⌣⊲, ℵ⊲) and

public parameters 𝐷𝐾 = (𝐼, 𝜗, ℏ = 𝜍(𝜗, 𝜗)
⦃⨌

5=1 𝛻5 , ⌢5 = 𝜗⌣5 (1 ⨋ 5 ⨋ ⨌ ),
𝐺(.)).

KeyGeneration (𝐷𝐾 ,𝐿𝐾ℶ5(1⨋5⨋⨌ ),A𝜑) ⥳ 𝐼𝐾𝑍 : In a similar way to

PACS, each authority 11⊲ computes 3 = 𝜗
⦃⨌

ℏ=1(𝛻ℏ+⋆ℏ ) and sends it to
user U. Then, for each attribute ℶℷℷ(ℏ) ϱ A𝜑 authorized by 11⊲, it
selects one attribute value 𝛻ℶℷℷ(ℏ) among all possible values, computes
3ℏ = 𝜗(

⦃⨌

5=1 ⋆5−⌣⊲)(𝐺(𝛻ℶℷℷ(ℏ)))7ℏ and 3φ
ℏ = 𝜗7ℏ , and sends 3ℏ , 3φ

ℏ along with
𝛻ℶℷℷ(ℏ) to user U. The user’s secret key would be 𝐼𝐾𝑍 = (3, ϖℏ ϱ A𝜑 ε
(3ℏ , 3φ

ℏ )).

KeyGenOut (𝐷𝐾 ,𝐼𝐾𝑍 , 𝑊) ⥳ 𝐼𝐾1−𝑊
𝑍 : Similar to PACS, user U chooses

random secret retrieving key 𝑊 ϱ Zω
𝜀 and transforms secret key 𝐼𝐾𝑍 to

its blinded version (i.e. 𝐼𝐾1−𝑊
𝑍 = (31−𝑊,ϖℏ ϱ A𝜑 ε (31−𝑊

ℏ , 3
φ1−𝑊
ℏ ))).

Encrypt (𝐷𝐾 , ∳ ,𝐿) ⥳ .𝜔 : Similar to PACS, data owner 30 selects
random number 6, 𝑉6 ϱ7 Zω

𝜀 and shares it in tree access structures ∳

with root 𝜕. Each leaf node 4 in tree access structure ∳ is associated
with attribute value 𝛻ℶℷℷ(4) assigned for attribute ℶℷℷ(4). It selects two
generators g and h for Zω

𝜀 , chooses random message 𝑉𝐿 and computes
.,⊳⊳5ℷ(𝐺(𝐿),𝐺( 𝑉𝐿)) = (g𝐺(𝐿).h𝐺( 𝑉𝐿)). Then, it uploads the ciphertext
.𝜔 =

⟩
g, h, 𝑈. = .,⊳⊳5ℷ(𝐺(𝐿),𝐺( 𝑉𝐿)),𝐶 = 𝐿 .ℏ6, 𝑉𝐶 = 𝑉𝐿 .ℏ6,. =

𝜗6,ϖ5 ϱ A∳ ε (.5 = ⌢85(0)566(5) = 𝜗(⌣566(5) 85(0)),. φ
5 = 𝐺(𝛻ℶℷℷ(4))85(0))

⟪
to CSP.

As we mentioned earlier, different attribute values 𝛻ℏ (ℵ)s, consid-
ered by DO to be associated with attribute ℶℷℷ(ℵ), should be embedded
in different tree access structures. However, to reduce the computation
cost of encryption, DO can construct just one tree access structure ∳ ,
assign different attribute values 𝛻ℏ (ℵ)s to a leaf node with attribute
ℶℷℷ(ℵ) in ∳ and compute different . φ

5ℏ
corresponding to different at-

tribute values 𝛻ℏ (ℵ)s (i.e. computing different {. φ
5ℏ
}
ℏ
for one tree access

structure instead of constructing different tree access structures and
computing . φ

5 for each of them).

DecryptionOut (𝐷𝐾 ,𝐼𝐾1−𝑊
𝑍 ,A𝜑,.𝜔 ) ⥳ .𝜔 φ: To have access to plain-

text 𝐿 embedded in .𝜔 , user U checks if the values of his attributes
satisfy the policy defined for that ciphertext. If yes, he sends his blinded
secret key 𝐼𝐾1−𝑊

𝑍 , and his attribute set A𝜑 (not the values) to CSP.
For each leaf node ℵ in tree access structure ∳ and corresponding

attribute ℶℷℷ(5) ϱ A𝜑, CSP computes 3𝜍𝐵2,⋆𝜍(.𝜔 ,𝐼𝐾1−𝑊
𝑍 , ℵ) = 𝜍(31−𝑊

5 ,.ℵ)
𝜍(3φ

5 ,.
φ
ℵ)
.

If the user’s attribute value, embedded in 35, is equal to the value
defined for attribute of node ℵ, 3𝜍𝐵2,⋆𝜍(.𝜔 ,31−𝑊

5 , ℵ) will be equal to
𝜍(𝜗, 𝜗)8ℵ(0)♭⋆⊲−𝑊. CSP recursively computes 1 as 3𝜍𝐵2,⋆𝜍(.𝜔 ,𝐼𝐾1−𝑊

𝑍 ,𝜕)
for root node 𝜕 of tree access structure ∳ . If the user is eligible to
access plaintext 𝐿 and user’s attributes values (ϖℶℷℷ(5) ϱ A𝜑) are equal
to the corresponding values embedded in ∳ , then 1 will be equal to
𝜍(𝜗, 𝜗)8𝜕(0)♭⋆⊲−𝑊 = 𝜍(𝜗, 𝜗)6♭⋆⊲−𝑊 and ℏ6−𝑊 = 𝜍(. ,31−𝑊)

1 would be equal to

𝜍(𝜗, 𝜗)
⦃⨌

5=1 𝛻56−𝑊. Then, CSP sends all possible .𝜔 φ = ( 𝑈. ,𝐶, 𝑉𝐶, ℏ6−𝑊) to U.

Decrypt (𝐷𝐾 , 𝑊,.𝜔 φ) ⥳ 𝐿 : User U computes ℏ6 using ℏ6−𝑊 and his
retrieving key 𝑊. He extracts 𝐿 and 𝑉𝐿 as follows: 𝐿 = 𝐶−ℏ6 and
𝑉𝐿 = 𝑉𝐶−ℏ6. . Then, it checks commitment 𝑈.

?= .,⊳⊳5ℷ(𝐺(𝐿),𝐺( 𝑉𝐿)).
If it holds, U has access to valid plaintext 𝐿 .

Providing user U with privacy protection and anonymity against sta-
tistical analysis requires anonymizing his attributes included in quasi-
identifier of users. Thus, to reduce the computation overhead, we need
to provide anonymity, and define ∱ possible values for a subset of
attributes which are part of quasi-identifier (and not all of them).

Theorem 5. If PACS is selectively secure and indistinguishable against
chosen plaintext attacks (IND-CPA), then SPACS is selectively secure and
indistinguishable against chosen plaintext attacks (IND-CPA).

Proof. First, we assume that there is just one possible attribute value
𝛻ℶℷℷ(5) for each attribute ℶℷℷ(5) (i.e. ∱ = 1). In this case, according to
the construction of SPACS, compared to PACS, it has additional parts
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Table 2
Performance comparison of PACS, SPACS, [18–21]: Computation complexity and security characteristics (FGA: Fine-Grained Access, MA: Multi Authority, UA: User Anonymity, USA:
User Statistical Anonymity, UAU: User Authorization, CA: Collusion Attacks, CPA: Chosen Plaintext Attacks).
Scheme Computation overhead in phase Supporting Immunity to

Key Gen. (U) Key Gen. (115) Enc. (DO) Dec. (U) FGA MA UA USA UAU CA CPA

[19] 0 (6⌋A⌋ + 4)𝜔𝐶>
(3⦃⌋∳ ⌋

5=1 25 + 3)𝜔𝐶>
+ 2𝜔𝐶>𝜔

(2⦃⌋∳ ⌋
5=1 25 + 4)𝜔𝐷 ⥴ ϑ ⥴ ϑ ⥴ ⥴ ⥴

[18] 0 (6⌋A⌋ + 4)𝜔𝐶>
(3⦃⌋∳ ⌋

5=1 25 + 3)𝜔𝐶>
+ 2𝜔𝐶>𝜔

(2⦃⌋∳ ⌋
5=1 25 + 2⌋∳ ⌋ + 2)𝜔𝐷 ⥴ ϑ ⥴ ϑ ⥴ ⥴ ⥴

[20] 0 (2⌋A𝜑⌋
/
(⨌ + 2))𝜔𝐶>

(2⌋∳ ⌋ + 2)𝜔𝐶>
+ 𝜔𝐶>𝜔

(4⌋A𝜑⌋ + 1)𝜔𝐷 ϑ ⥴ ⥴ ϑ ϑ ϑ ϑ
[21] 0 (⌋A𝜑⌋(⨌ ς 1) + 2⌋A𝜑⌋

/
(⨌ + 2))𝜔𝐶>

(2⌋∳ ⌋ + 2)𝜔𝐶>
+ 𝜔𝐶>𝜔

(4⌋A𝜑⌋ + 1)𝜔𝐷 ϑ ⥴ ⥴ ϑ ϑ ϑ ϑ
PACS (2⌋A𝜑⌋ + 1)𝜔𝐶>

(2⌋A𝜑⌋
/
(⨌ + 2))𝜔𝐶>

(2⌋∳ ⌋ + 1)𝜔𝐶>
+ 𝜔𝐶>𝜔

𝜔𝐶>𝜔
⥴ ⥴ ⥴ ϑ ⥴ ⥴ ⥴

SPACS (2⌋A𝜑⌋ + 1)𝜔𝐶>
(2⌋A𝜑⌋

/
(⨌ + 2))𝜔𝐶>

(2⌋∳ ⌋ + 2 + ⌋𝛻ℶℷℷ⌋)𝜔𝐶>
+ 𝜔𝐶>𝜔

(3⌋𝛻ℶℷℷ⌋)𝜔𝐶>𝜔
⥴ ⥴ ⥴ ⥴ ⥴ ⥴ ⥴

g, h, 𝑈. = .,⊳⊳5ℷ(𝐺(𝐿),𝐺( 𝑉𝐿)), and 𝑉𝐶 = 𝑉𝐿 .ℏ6 in a ciphertext. Thus,
to prove the selective security of SPACS against CPA, we need to show
that the additional parts do not disclose any more information about
the chosen plaintext, selected by challenger ⨐, in CPA model defined
for PACS. To do that, we define the following two games:

• >ℶ⊳𝜍0: The original game defined for selective security and in-
distinguishability against chosen plaintext attacks (IND-CPA) of
PACS.

• >ℶ⊳𝜍1: Same as >ℶ⊳𝜍0 except the way challenger ⨐ generates
challenge ciphertext .𝜔 =

⟩
g, h, 𝑈. ,𝐶, 𝑉𝐶,. ,ϖ5 ϱ A∳ ε (.5,. φ

5 )
⟪

in which challenger ⨐ selects g, h, 𝑈. and 𝑉𝐶 randomly.

Since g, h are selected randomly and since Pedersen Commitment Scheme
is perfectly hiding [31], by proving the negligibility of the advantage
of the adversary in >ℶ⊳𝜍1, we can deduce that, for ∱ = 1, the
construction of SPACS, which is PACS equipped with commitment part,
is also selective secure and indistinguishable against chosen plaintext
attacks. To do that, let us assume that ⨍ be a PPT adversary in
selective secure CPA model defined by >ℶ⊳𝜍1. We show that if adver-
sary ⨍ has non-negligible advantage in >ℶ⊳𝜍1, we can construct PPT
algorithm ⨑ that can break the security of PACS in selective secure
CPA model (i.e. >ℶ⊳𝜍0) with non-negligible advantage. Let ⨐ be a
challenger corresponding to ⨑. The simulator ⨑, as an intermediary
layer, simultaneously plays the role of challenger for ⨍, collaborates
with ⨍ to run initialization, setup, and first round learning phases in
both >ℶ⊳𝜍0 and >ℶ⊳𝜍1. As a challenger in >ℶ⊳𝜍1, ⨑ takes the items
selected by ⨍ in initialization, setup, and first round learning phases,
transfers them to ⨐ in >ℶ⊳𝜍0 and returns back its responses to ⨍. In
challenge phase, ⨍ selects two distinct chosen plaintexts 𝐿0 and 𝐿1
and sends them to ⨐ via ⨑. ⨐ selects bit ♯ ϱ {0, 1} uniformly at
random, and returns the ciphertext (𝐶,. ,ϖ5 ϱ A∳ ε (.5,. φ

5 )) to ⨑.
⨑ selects g, h, 𝑈. and 𝑉𝐶 randomly, and sends its challenge ciphertext
.𝜔 = (g, h, 𝑈. ,𝐶, 𝑉𝐶,. ,ϖ5 ϱ A∳ ε (.5,. φ

5 )) to ⨍. After performing second
round of learning, similar to the first one, ⨍ selects its own guess ♯φ

of ♯ and sends it to ⨑. Then, ⨑ transfers guess ♯φ as its own output.
Thus, for ∱ = 1 if there exists a PPT algorithm with non-negligible

advantage to break security of SPACS in selective secure CPAmodel, we
are able to construct a PPT algorithm with non-negligible advantage
to break security of PACS in selective secure CPA model. Moreover,
since for the case that ∱ ⨒ 1, the adversary has at most the same
knowledge as that for ∱ = 1, SPACS will remain selective secure and
indistinguishable against chosen plaintext attacks. ⋛

Theorem 6. Assume that the identity of each user U can be recognized
from his set of attributes A𝜑. If attribute values 𝛻ℶℷℷ(5)s considered for each
attribute ℶℷℷ(5) belong to a set of at least ∱ possible attribute values 𝛻ℶℷℷ(5) ϱ
{𝛻ℏ (5)}1⨋ℏ⨋∱5 ,∱⨋∱5

, then SPACS satisfies ∱-anonymity for all users.

Proof. Based on the construction of SPACS, since each user’s at-
tribute ℶℷℷ(5) takes its value 𝛻ℶℷℷ(5) from a set of at least ∱ possi-
ble attribute values {𝛻ℏ (5)}1⨋ℏ⨋∱5 ,∱⨋∱5

, then any sequence of attribute
values

⌈
𝛻ℶℷℷ(5φ1),… , 𝛻ℶℷℷ(5φ⌋A𝜑⌋)

⌉
associated with user U (respectively,

⌈
𝛻ℶℷℷ(5φ1),… , 𝛻ℶℷℷ(5φ⌋A+

𝜑 ⌋
)
⌉
associated with the quasi-identifier of U) be-

longs to a set of at least ∱ possible indistinguishable sequences of
attribute values

⌈
{𝛻ℏ (5φ1)}1⨋ℏ⨋∱5φ1

,… , {𝛻ℏ (5φ⌋A𝜑⌋)}1⨋ℏ⨋∱5φ⌋A𝜑 ⌋

⌉
(respec-

tively,
⌈
{𝛻ℏ (5φ1)}1⨋ℏ⨋∱5φ1

,… , {𝛻ℏ (5φ⌋A+
𝜑 ⌋
)}1⨋ℏ⨋∱5φ

⌋A+𝜑 ⌋

⌉
). Thus, according to

∱-anonymity definition for individual users, SPACS is ∱-anonymous
for all users. ⋛

10. Performance evaluation

To evaluate the performance of the proposed schemes, we compare
computation overhead of PACS and SPACS against state of the art
including [18–21]. Let ⌋∳ ⌋ be the number of leaves in the tree access
structure, 𝐶G and 𝐶G𝜔

denote the exponentiation operations in groups
G and G𝜔 respectively, 𝐷 indicates the bilinear pairing operation in
G−G𝜔 , 𝜔⨓ represents the time taken to perform one operation ⨓, A𝜑
denotes the user’s set of attributes involved in encryption and decryp-
tion, ⌋𝛻ℶℷℷ⌋ be the number of attribute values considered for combination
of all attributes that belong to quasi-identifier, ⨌ be the number of
authorities, ≨G and ≨G𝜔

denote the length of elements in groups G
and G𝜔 respectively. Table 2 shows a comparison for computation
complexity of PACS, SPACS and the schemes presented in [18–21]
in terms of Key Generation, Encryption and Decryption. The compu-
tation complexity concerns the most significant operations, namely
exponentiation operations 𝐶G and 𝐶G𝜔

, and pairing operation 𝐷 .
To perform the evaluation, we make use of MNT159 curves type

3 with the embedding degree ⊲ = 6. Our evaluation is based on Java
realization of CP-ABE toolkit [40] and uses Java Pairing-Based Cryptog-
raphy (jPBC) library [41] (i.e. a port of the Pairing-Based Cryptography
(PBC) library [42] to perform the mathematical operations underlying
pairing-based cryptosystems directly in Java). The analysis is conducted
based on a platform consisting of (a) a large instance Amazon EC2 with
the configuration of 7.5 GB RAM, 4 EC2 compute units, 850 GB instance
storage and 64-bit platform as CSP, and (b) an Apple iMac with Intel
Core 2 Duo at 2.66 GHz, 4 GB RAM as data owner, user and attribute
authorities. We evaluate the time overhead caused by authorities and
users interactions in Setup and Key Generation phases using OMNET++
and INET framework. We compare the performance of PACS and SPACS
with other existing anonymous attribute-based solutions [18–21]. For
our comparison, we assume that ∱ is equal to three and the number of
attributes involved in quasi-identifier is equal to five (i.e. ⌋A+

𝜑 ⌋ = 5).
Figs. 3 shows the computation overhead of PACS, SPACS and [18–

21]. More specifically, Figs. 3(a) and 3(b) show the impact of the
number of authorities and number of attributes associated with user, in
Setup and Key Generation phases. We observe that by varying either the
number of authorities (see Fig. 3(a)) or the number of attributes (see
Fig. 3(b)), PACS and SPACS incur almost the same computation times
for authorities in Setup and Key Generation phases compared to those
incurred by [20] (and less in comparison to those incurred by [21]).
Moreover, to outsource the computation overhead in decryption pro-
cess to CSP, PACS and SPACS impose a small computation overhead
on user (which is caused by KeyGenOut algorithm, see Section 7.2).
This results in reducing the computation overhead of user in decryption
process to almost constant irrespective of the number of attributes
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Fig. 3. Computation time analysis of the proposed schemes: (a) The impact of number of authorities in Setup and Key Generation overhead while each authority issues five attributes
for each user, (b) The impact of number of attributes for each user in Setup and Key Generation overhead (⨌ = 5), (c) The impact of number of attributes in Encryption overhead,
(d) The impact of number of attribute values, associated with attributes included in quasi-identifier, in Encryption overhead (ℸ𝜑⊳𝑊𝜍7 ,𝐴 ℶℷℷ75𝑊𝜑ℷ𝜍6 = 20), (e) The impact of number
of attributes in Decryption overhead, (f) The impact of number of attribute values, associated with the combination of attributes included in quasi-identifier, in Decryption overhead
(ℸ𝜑⊳𝑊𝜍7 ,𝐴 ℶℷℷ75𝑊𝜑ℷ𝜍6 = 20).

(see Fig. 3(e)). Indeed, compared to [18–21], PACS and SPACS impose
negligible computation overhead on user side in decryption process.
Fig. 3(c) shows almost similar computation time overhead for [20,21],
PACS and SPACS in Encryption process, while the number of attributes
increases from 1 to 20 (and less compared to [18,19]). Here, since none
of [18–21] satisfies user statistical anonymity (See Table 2), to get a
fair comparison, we assume one attribute value for each attribute in
Encryption and Decryption processes of SPACS (See Figs. 3(c) and 3(e)).

Figs. 3(d) and 3(f) illustrate the impact of number of attribute
values associated with the combination of attributes included in quasi-
identifier, on Encryption and Decryption processes while using SPACS.
We observe that SPACS imposes a small computation overhead for DO
in Encryption process, irrespective of the number of attribute values
(See Fig. 3(d)). Moreover, it introduces a small computation overhead
(increases linearly) for user in Decryption process, while the combina-
tion of attribute values in quasi-identifier varies from 1 to 20 different
values (See Fig. 3(f)).

11. Conclusion

In this paper, we discussed how to preserve user privacy in the ABE
systems. Our investigation shows that supporting anonymity of users
requires providing anonymity for their individual-specific attributes as
well as their identities. Thus, we developed a new model of anonymity
to include users’ individual-specific attributes as well as their identi-
ties for attribute-based encryption. We reviewed existing contributions
in anonymous attribute-based encryption and did show their weak-
nesses in users and authorities collusion, user authorization and user
anonymity protection. Furthermore, we proposed PACS, a fine-grained
access control for multi-authority supporting and user anonymization
(without any trusted third-party). We showed its immunity against
users collusion, authority collusion, and chosen plaintext attacks. We
also proposed an extension of PACS, called SPACS, which supports
statistical anonymity for attributes and individual users without trust-
ing authorities or providers. The security analysis and performance
evaluation did show that the proposed solution is a promising approach
to use anonymous ABE.
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