
Worst Attack Vulnerability and Fortification for IoT
Security Management: An approach and An

Illustration for Smart Home IoT
Fathima James1, Indrajit Ray2, Deep Medhi3

1University of Missouri–Kansas City, USA, 2Colorado State University, USA, 3National Science Foundation, USA
fjmb7@umsystem.edu, indrajit.ray@colostate.edu, dmedhi@nsf.gov

Abstract—In the domain of IoT security management, we
consider attack vulnerabilities and how to identify those so as
to prevent attacks from spreading. More specifically, inspired by
this problem for Smart Home Internet of Things (SHIoT), we take
a complex network framework in which an IoT system attack
graph can be cast. We then address the problem of assessing
the worst vulnerability, that is the one that has the potential to
cause maximum damage, in the SHIoT. Due to the non-additive
nature of an attack path’s attack probability, we show how the
problem can be modeled so that a shortest path-based algorithm
approach can be used to determine the worst vulnerability. We
then illustrate an approach to iteratively fortify the environment to
reduce impact from vulnerability. Finally, we show an approach to
use Common Vulnerability Scoring System (CVSS) to determine
attack probabilities on arcs in the attack graph and present
analysis on representative attack graphs for small to large attack
graphs.

Index Terms—IoT device management, Smart Home Internet
of Things, Finite State Automata based Attack Model, Graph
Analysis, Vulnerability Analysis.

I. INTRODUCTION

IoT security management is a challenging problem. The
devices may be compromised for a variety of reasons. In this
context, it is useful to cast an IoT environment as a complex
network that is intended to support a mission rather than just
as a set of connected entities. With this view, the security and
survivability of the IoT environment is dependent not only
on the security of the underlying infrastructure but also on
the ability to ensure that unforeseen circumstances, such as,
changes to the mission requirements, zero day attacks, and
unpredictable human errors in interactions with the mission is
adequately addressed and managed. Additionally, in the worst
case, there needs to be provisions for the graceful degradation
of mission services by avoiding cascading catastrophic failures,
when all defensive measures have failed.

To ensure that such a complex network continues to operate
in a survivable manner, it is important to be proactive in un-
derstanding and reasoning about evolving threats to the service
availability, their potential effects on the mission survivability,
and identify ways to best defend against these threats, instead
of being reactive. Unfortunately, currently there does not appear
to exist a comprehensive algorithmic solution that addresses all

aspects of this survivability problem. For example, there are
gaps in the research on how to map a qualitative description
of a mission’s survivability goals into a formal model of
survivability. There are gaps in our understanding of how
human operators contribute towards the survivability goals of
a mission. These are challenging issues and many fall outside
the scope of this work. Here, we take the first steps in trying to
address some aspects of the survivability problems. We believe
that a graph-theoretic analysis of networks have the potential to
help with proactive analysis of survivability goals. In this paper,
we outline an approach towards doing this using the notion of
attack graphs in IoT networks.

Instead of covering the entire spectrum of all types of IoT
devices and environments, we illustrate here the problem for
Smart Home IoT (SHIoT). An attack on an SHIoT system
can take place either by initiating an attack from within the
smart environment (that is, an insider or local network attack)
or by initiating the attack from an external source (i.e., an
outsider or public network attack)[1]. SHIoT devices are more
vulnerable to cyber-attacks because they are special purpose
internet-connected devices and run tiny operating systems such
as INTEGRITY, Contiki, FreeRTOS, and VxWorks, whose
security solutions are not entirely robust and once deployed,
may not be easily upgradable to ensure security capability
against evolving cyber-attacks [2].

In this work, we first elaborate on a graph-based representa-
tion and analysis of attack modeling for an off-line assessment.
We then address the problem of assessing vulnerability from
an attack source to a compromised state by considering the
attack graph of an SHIoT system. Towards this, we start with
a broader framework for the graph-based approach for attack
graphs of an SHIoT system. We represent all possible ways
that the SHIoT’s mission can be compromised based on our
current knowledge of vulnerabilities existing in the system as
graph. Nodes in the graph represent states and arcs represent
transition from one state to another caused by a vulnerability.
Each arc is associated with a probability value that represent the
probability of the state transition triggered by an attack. Attack
is captured by a path in the graph. Our objective is to determine
the easiest way (from an attacker’s perspective) to compromise

3rd International Workshop on Internet of Things Management (Manage-IoT 2023) - Workshop of NOMS 2023
N

O
M

S
20

23
-2

02
3

IE
EE

/IF
IP

 N
et

w
or

k
O

pe
ra

tio
ns

 a
nd

 M
an

ag
em

en
t S

ym
po

si
um

 |
97

8-
1-

66
54

-7
71

6-
1/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

N
O

M
S5

69
28

.2
02

3.
10

15
43

38

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 09,2024 at 17:49:29 UTC from IEEE Xplore. Restrictions apply.

the SHIoT network’s mission, and consequently, determine any
actions that could be taken to minimize vulnerability. Owing
to probabilistic values, the path vulnerabilities do not have
additive cost properties. Thus, an important contribution of
our work is to show how this problem can be transformed
to a problem of determining the shortest path. Furthermore,
we address the problem of fortifying the systemic view of
the SHIoT from vulnerabilities from a systems management
perspective. For this, we build on the graph-theoretic analysis
to tackle this problem through an iterative process. In particular,
we identify the weakest arcs in the attack graph that can
then help systems administrators to take actions to reduce
vulnerability in the attack graph, and to then iteratively fortify
the SHIoT system. For our study, we use probabilistic values
based on Common Vulnerability Scoring System (CVSS) [3]
for vulnerabilities to how this fortification can be assessed on
representative graphs.

This work builds on our previous work [4] where we
developed a new framework for modeling attacks in SHIoT
based on finite state automata (FSA), which has a graph-
based representation. An advantage of our approach is that
depending on the types of cybersecurity based attacks (such as
confidentiality-based or authentication-based) and for the type
of network environment, we can generate appropriate FSA-
based attack graphs. The finite state automata is intended to
help facilitate the attack execution flow by grouping attack
vulnerabilities. The FSA based attack model takes the attack
behavior as the associated process, classifying the attack entity,
then studying the state transfer under the attack behavior, and
finally being able to identify attack vulnerabilities.

The rest of the paper is organized as follows. In Section II, we
present the overall framework for graph-based representation
and analysis for attacking modeling for IoT. In Section III, we
show how the worst vulnerability in attack graphs can be deter-
mined by using a transformation of the problem and through a
shortest-path based method; this is followed by an illustration of
the fortification process in Section IV and analysis in Section V.
Related works are discussed in Section VI. Finally, we present
a summary along with limitations of our work in Section VII.
A brief appendix on attack modeling using graph-based finite
state automata for SHIoT, which inspired this work, is included;
for details on that work, see [4].

II. GRAPH-BASED REPRESENTATION AND ANALYSIS FOR
ATTACK MODELING

We cast an IoT environment as a complex network where
the intent is to support the mission rather than just as a set of
connected entities. We envision the steps to be as follows:

1) Formulate a graph model to capture all possible mission
dependencies that are relevant as well as their relationships
to the broader mission objectives, which will allow mission
survivability related analysis.

2) Identify graph metrics and graph analysis techniques to
answer queries about the resiliency of individual compo-

nents to security threats, as well as answer questions about
the overall mission survivability.

We consider the graph model to help us perform two types
of analyses: (i) graph-theoretic and (ii) quantitative. The graph-
theoretic analysis is geared more towards what-if queries on
survivability. It helps us to identify critical components of the
mission, their relationships with each other and to the overall
mission objectives. It might also help us identify potential
but yet undiscovered attacks on the mission continuity. It also
drives the quantitative analysis that may help answer questions
about the overall robustness of the mission. Thus, we focus
on developing a graph-theoretic analysis framework for the
mission based on the above philosophy. We (i) propose graph
metrics to evaluate roles played by various arcs in component
graphs and identify mission critical arcs, (ii) develop graph
metrics that can be used to answer what-if queries on the
mission continuity, and (iii) develop efficient techniques to re-
evaluate core mission graph and propose enhancement.

We outline three different types of analysis on the mission
network:

1) Structural analysis – This will determine which individual
components are most critical to the continuity of the
mission and if attacked can lead to serious (potentially
cascading) failures in the mission. The result of these
analyses (there can be different types depending on the
chosen metric) will provide different ranked sets of critical
arcs representing different aspects of mission continuity
(what are those aspects of mission continuity), and will
serve as the basis for making quantitative analysis.

2) Vulnerability analysis – This analysis will use the ranked
set of mission critical arcs and determine which cyber
vulnerabilities on these critical arcs can be exploited
resulting in the compromise of the mission. The analysis is
similar to a traditional attack graph based analysis but will
also perform newer analysis that will allow us to fortify the
environment to provide enhanced survivability to attacks.
For this, we need to perform quantitative analysis on the
resulting graph.

3) Fortification analysis – The purpose of this analysis is
to study the impact of different component’s compromise
on the overall mission and how to strategically address
vulnerabilities of different arcs in an attack graph. This
helps one to determine strategies for mission survivability
towards fortification of the system.

The above thought process led us to the work proposed in
this paper wherein we employ an iterative technique to propose
fortification.

III. VULNERABILITY ANALYSIS THROUGH AN
ALGORITHMIC APPROACH

Our vulnerability analysis for an attack graph is based on
determining the worst vulnerable path in an attack graph; see
Appendix for an illustration on how an attack graph is generated
for an SHIoT system. Since the vulnerability of an arc in the
graph is represented as a probabilistic value, the usual shortest

3rd International Workshop on Internet of Things Management (Manage-IoT 2023) - Workshop of NOMS 2023

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 09,2024 at 17:49:29 UTC from IEEE Xplore. Restrictions apply.

path based approach cannot be used. Thus, we present an
approach to tackle the problem.

Consider an attack graph G of N nodes in which vij
represents the vulnerability probability of an arc associated with
attack Si → Sj , where 0 < vij ≤ 1, in this attack graph. If
two states Si and Sj are not connected, then vij is assumed to
be zero.

Given vij , the vulnerability of path p from state Si to state
Sj is given by

v(i,j)
p = 1−

∏
(i′,j′)∈Pij

(1− vi′j′) (1)

where Pij is the path consisting of the set of arcs (i′, j′) for
path p from state Si to state Sj . Thus, the problem of finding
the most vulnerable path in a graph between two states Si and
Sj among the set of paths Ω may be written as

max
p∈Ω

v(i,j)
p (2)

Observe that vp has non-additive properties in terms of arc
vulnerability probabilities. Thus we cannot directly apply a
shortest path algorithm based on the vulnerability probabilities.

Instead, we bank our approach on another observation. The
complement of vulnerability for an arc is reliability where we
denote the reliability of Si → Sj for an arc to be rij = 1−vij .
While there has been work on determining the most reliable
path in a graph ([5]), the problem of finding the most vulnerable
path has not been explored.

Now, given rij , the vulnerability of path p in (1) can be
written as

v(i,j)
p = 1−

∏
(i′,j′)∈Pij

ri′j′ (3)

Now we introduce the term wp to be 1−vp, i.e., we can rewrite
(3) as

w(i,j)
p =

∏
(i′,j′)∈Pij

ri′j′ (4)

Note that wp is not the reliability of path p.
Based on wp, we can write (2) as the following equivalent

problem
min
p∈Ω

w(i,j)
p (5)

Since (3) has product terms, for the minimization problem (5)
we cannot directly apply a shortest path algorithm. On the other
hand, taking logarithm of both sides in (4), we can write

logw(i,j)
p = log

 ∏
(i′,j′)∈Pij

ri′j′

 =
∑

(i′,j′)∈Pij

(log ri′j′) (6)

Thus, we can now solve the minimization problem (5) by
using the arc weight to be log ri′j′ since we now have additive
properties of path in terms of arc cost log ri′j′ . We do still
have an additional issue to address. Since 0 ≤ ri′j′ ≤ 1, the
term log ri′j′ < 0, i.e., in the log-space, the arc weights are
always negative. Recall that the attack graph we described has

acyclic property, which means that we can apply Bellman-Ford
algorithm for arcs with negative weights log ri′j′ [6].

To summarize, our overall approach to determine the most
vulnerable path in an attack graph is as follows from the initial
state S1 to the compromised state Scomp:
• Instead of arc vulnerability vij , use the transformed term

log(1 − vij) = log rij for each arc as the abstracted arc
weight.

• Instead of solving (2), solve (5) by considering the arc
weight as log rij using the Bellman-Ford shortest path
algorithm on the acyclic attack graph.

This is summarized in Algorithm 1.

Algorithm 1 Vulnerability Analysis: Determining Worst Vul-
nerability in an N -node Attack Graph from state S1 to the
compromised state Scomp

Require: Input: Attack graph G of N nodes with arcs associ-
ated with attack Si → Sj and their vulnerabilities vij
D1,1 ← 0
for (k = 2 to k = N − 1) do
D1,k ←∞

for (h = 0 to N − 1) do
D1,comp ← min

∀k 6=comp

{
D1,k + log(1− v

k,comp
)
}

Update p
endfor
return F ← D1,comp (cost), p (the most vulnerable path)

IV. FORTIFICATION PROCESS

The Fortification process builds on the vulnerability analysis
discussed above. Our approach on fortification is based on first
identifying the weakest arc on the most vulnerable path of the
attack graph. We assume that once we know this, we can take
measures to reduce its weakness through efforts such as any
software updates to reduce its vulnerability.

We assume, in this study, that we can do this improvement
in a certain boosting value on the weakest arc on the most
vulnerable path. We then re-run the vulnerability analysis
on the attack graph with this change in the arc weight due
to improvement. We continue this process of improvement
iteratively until a desirable threshold on fortification is attained.
Since in our scenario, no arc can have vij below 0.0, we added
a condition in this iterative process to check for this possibility.
This process is captured in Algorithm 2. In practice, it may not
be possible to reduce vulnerability on every arc of the attack
graph. This variation can be easily captured in our fortification
process by marking such arcs as not candidates for boosting.

V. ANALYSIS ON VULNERABILITY AND FORTIFICATION

Our fortification process is assessed in representative attack
graphs to quantify the number of iterations needed to reach a
particular fortification threshold. Note that our process is quite
generic and can be used for a wide range of attack graphs for
vulnerability assessment beyond the realm of SHIoT.

3rd International Workshop on Internet of Things Management (Manage-IoT 2023) - Workshop of NOMS 2023

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 09,2024 at 17:49:29 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Fortification Process

Require: Input: an attack graph G with N nodes with arc
vulnerabilities vij

Require: Input: Fortification threshold: Fthreshold

Require: Input: Boost parameter: B
Initialize: Fnow = 1.0
Fnow, pnow ← Algorithm 1
While (Fnow ≥ Fthreshold) do

(i′, j′)← argmax(i,j)∈pnow
vij

vi′j′ = max{vi′j′ −B, 0}
Fnow, pnow ← Algorithm 1

end While
return # of iterations to reach Fthreshold

A. Determining arc vulnerability

Our approach for attack model vulnerability is based on
the probabilistic estimation of arc’s vulnerability on the at-
tack graph. To compute the probability of an attack arc, the
probability of success needs to be estimated while an attacker
exploits a vulnerability exploitation. We use the metrics defined
in VCE database Common Vulnerability Scoring System in
this paper to evaluate the attack probability. CVSS is the
most commonly used vulnerability scoring system and it is
supported by the US national vulnerability Library (NVD) [7].
It comprises three distinct groups of metrics such as base,
temporal, and environmental. The base metrics measure the
intrinsic characteristics of a vulnerability with two subscores:
(1) the exploitability score, composed of the access complexity
and authentication (AU) occurrences and (2) the impact score,
expressing the potential damage on confidentiality(C), integrity,
and availability(AC). The temporal metrics measure dynamic
aspects of a vulnerability in the environment around the smart
home. The environmental metrics measure two aspects of
impact that are dependent on the environment surrounding the
smart home. More information on CVSS metrics and their
scoring computation can be found in the CVSS documentation
[3].

In this work, we considered only the base metrics score
such as authentication, confidentiality, and access control in
the analysis. Since this paper focuses on the vulnerability
probability assessment of the smart home network system,
in order to simplify the problem, we do not consider the
temporal and environment metrics group. The Base Score
formula depends on sub-formulas for Impact Sub-Score (ISS)
and Exploitability, which are defined below:

ISS = 1 − [(1 − Confidentiality) × (1 − Integrity) × (1 −
Availability)]

Given the vulnerability exposure information (CVSS
attributes), the probability of vulnerability v of an arc (i, j) is
computed from CVSSs Exploitability subscore as the following:

Metric Metric Value Numerical Value
Attack Vector local 0.7

remote 1.0
Attack Complexity high 0.8

low 1.0
Privileges Required required 0.6

not-required 1.0
User Interaction none 0.8

required 0.6
Confidentiality partial 0.7

complete 1.0
Integrity partial 0.7

complete 1.0
Availability partial 0.7

complete 1.0

TABLE I: Base metric elements and values of the base metric
group based on the CVSS [3]

v = ISS × AttackVector × AttackComplexity ×
PrivilegesRequired× UserInteraction

All metrics are determined under the assumption that the
attacker has already located and identified the vulnerability.
Thus, the analyst need not consider how the vulnerability
was identified. Additionally, many different sectors’ individ-
uals will be scoring vulnerabilities, such as software vendors,
vulnerability bulletin analysts, and security product vendors.
However, vulnerability scoring is expected to be skeptical of
the individual and their organization. For example, the privilege
required metric describes the level of privileges an attacker
must possess before successfully exploiting the vulnerability,
and this metric value can be categorized as none (1.0), and
required (0.6)[3].

B. Analysis

For our what-if analysis, we consider the 9-node attack graph
for SHIoIT shown in Figure 4 in the Appendix. In addition, we
used a 15-node attack graph (Figure 1) from [8], and generated
26-node and 50-node attack graphs.

We applied our fortification process on these graphs. For
the boost parameter, we started with 10% improvement and
conducted the study till 25% for an arc. For the fortification
threshold, we used values 0.4 to 0.7. The results for 9-node,
15-node, 26-node and 50-node attack graphs are presented in
Tables II, III, IV, and V, respectively. As can be seen from
the results, a higher fortification threshold and larger attack
graphs require more iterations to reach the goal, while small
boost steps also require a higher number of iterations. A higher
number of iterations reflects that more efforts are needed for
fortification.

This type of what-if analysis is helpful in systems manage-
ment for system administrators as they can strategically allocate
resources towards fortification of an SHIoT system. Secondly, a
real resource can be associated with each iteration to determine
the overall cost of such fortification.

3rd International Workshop on Internet of Things Management (Manage-IoT 2023) - Workshop of NOMS 2023

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 09,2024 at 17:49:29 UTC from IEEE Xplore. Restrictions apply.

Increment \Threshold P(0.4) P(0.5) P(0.6) P(0.7)
10% 152 179 197 216
15% 104 111 126 150
20% 73 89 93 102
25% 60 66 73 80

TABLE II: Iterations required for attack graph with 9 nodes
shown in Figure 4

Fig. 1: An attack graph with 15 nodes

Increment \Threshold P(0.4) P(0.5) P(0.6) P(0.7)
10% 246 274 312 356
15% 186 205 278 303
20% 154 178 211 284
25% 112 136 187 223

TABLE III: Iterations required for an attack graph with 15
nodes shown in Figure 1

Fig. 2: An attack graph with 26 nodes

Weight Increment P(0.4) P(0.5) P(0.6) P(0.7)
10% 468 494 531 588
15% 411 432 467 498
20% 392 421 458 487
25% 368 394 421 464

TABLE IV: Iterations required for an attack graph with 26
nodes shown in Figure 2

Fig. 3: An attack graph with 50 nodes

VI. RELATED WORK

In order to understand the IoT security landscape, a general
IoT threat model is needed [9]. Several studies have focused on
modeling attacks and intrusions with the objective of evaluating
various security metrics. Michael and Ghosh [10] employed

Weight Increment P(0.4) P(0.5) P(0.6) P(0.7)
10% 578 597 628 661
15% 523 564 592 628
20% 481 512 568 594
25% 452 489 529 576

TABLE V: Iterations required for an attack graph with 50 nodes
shown in Figure 3

a finite state machine (FSM) model constructed using system
call traces. Costa et al. [11] presented a practical method
supported by open source tools that can identify high risk
vulnerabilities present in smart home IoT devices. Wang et al.
[7] focused on vulnerability assessment of industrial internet
of things and proposed a vulnerability graph model based on
attack graph and a vulnerability algorithm based on maximum
loss stream. Chen et al. [12] combined an analysis of data on
security vulnerabilities and a focused source-code examination
to develop a finite state machine (FSM) model to describe
and reason about security vulnerabilities. Zhang et al. [13]
presented an attack modeling method based on system states
aggregation. This work combines finite automaton with the
changes of system state caused by the attack entity, building
the attack model of finite automaton, making an analysis of the
model algorithm, and making a quantitative evaluation on attack
cost, the success rate, exposure rate and evaluating severity
of attack on cyberspace. Davis et al. [14] mentioned that the
vulnerability studies of IoT devices to date are not all inclusive
and, in some cases, target well-known vendors or devices. For
a formal model for survivability that uses probabilistic model
checking, see [15] for wireless sensor networks.

As we can see, what is missing is how to analyze attack
graphs for worst-case survivability and how to fortify for IoT
security management.

VII. SUMMARY AND LIMITATIONS

Inspired by investigating the vulnerability of the threat and
attacker motive in an SHIoT environment, we presented a
graph-based framework for attacks in IoT security. In this
framework, an attack graph is first represented through Finite-
state automata for which we present vulnerability analysis,
followed by a fortification process to enhance the overall
system. In particular, we showed how vulnerability analysis
can be done using a Bellman-Ford algorithm with modified
arc weights, and how a fortification process can use this
vulnerability analysis through an iterative process. It may be
noted that our fortification process can be used for any acyclic
attack graphs, not just limited to SHIoT. We then studied our
approach on representative attack graphs.

Despite presenting a new way to look at IoT security
management through worst attack vulnerability, there are a
number of limitations of our work. Our approach may not work
for all types of IoT security management. In particular, the
worst attack vulnerability may not be the most important issue
for certain IoT security management. For instance, instead of

3rd International Workshop on Internet of Things Management (Manage-IoT 2023) - Workshop of NOMS 2023

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 09,2024 at 17:49:29 UTC from IEEE Xplore. Restrictions apply.

States Description Vulnerability Impact CVE#
S1 (adversary) - trying to access
user’s phone

Malware, Phishing Take control of device CVE-2021-
27612

S2 (User’s phone) - trying to con-
nect to a public wi-fi medium

Malware, Synchronization, Buffer Over-
flows, Phishing

Monitor user’s online activities,
take control of device

CVE-2021-
23977

S3 (Public Wi-Fi) - Accessing the
IoT application

possibility of joining a fake or rogue Wi-Fi
hotspot

allows cyber attackers to monitor
users online traffic

CVE-2018-
11477

S4 (Dongle/Portal router) - Ac-
cessing IoT application

It becomes discoverable to malicious at-
tacker seeking to exploit connection

allows attackers to sniff on network
traffic and inject malicious scripts

CVE-2019-
13053

S5 (IoT application) - Accessing
the web services

Infect associated smart application with
malware

User credentials and private data
could be stolen

CVE-2019-1698

S6 (Web services) - Accessing the
home Gateway Router

SQL Injection, Cross Site Scripting user data can be modified (In-
sert/Update/ Delete)

CVE-2021-3340

S7 (Home Gateway Router) - try-
ing to compromise the IoT device

Uses UPnP to modify firewall settings, to
reconfigure routers, and opens ports to IoT
devices

Botnet creation as part of larger
attacks such as DDoS

CVE-2009-2257

S8 (Compromised IoT device) Add fake/Sybil nodes to network and spread
malware

Affect the whole network system,
Increases the power consumption
of sensor nodes

CVE-2019-1957

TABLE VI: Network Transition State Vulnerabilities from [4] (CVE from [16])

probability, the cost to fortify an arc may be important or a
combination of both probability and cost with different prior-
ities may be important. Furthermore, while we used CVSS to
estimate the probability of an arc in our illustration, in practice,
this could be very difficult to determine. Also, estimates of the
probability could be erroneous, and thus, a straight-forward
application of our worst attack vulnerability approach may
lead to error propagation. These issues would be important to
consider in future research.

REFERENCES

[1] J. Pacheco and S. Hariri, “Iot security framework for smart cyber
infrastructures,” in Foundations and Applications of Self* Systems, IEEE
International Workshops on. IEEE, 2016, pp. 242–247.

[2] “Smart home security: Security and vulnerabili-
ties.” [Online]. Available: https://www.wevolver.com/article/
smart-home-security-security-and-vulnerabilities

[3] “Common vulnerability scoring system version 3.1: Specification
document.” [Online]. Available: https://www.first.org/cvss/

[4] F. James, I. Ray, and D. Medhi, “Situational awareness for smart home
iot security via finite state automata based attack modeling,” in 2021
Third IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), 2021, pp. 61–69.

[5] M. Roosta, “Routing through a network with maximum reliability,” J. of
Math. Analysis & Apps., vol. 88, no. 2, pp. 341–347, 1982.

[6] J. Fakcharoenphol and S. Rao, “Planar graphs, negative weight edges,
shortest paths, and near linear time,” J. Comp. & Sys. Sci, vol. 72, pp.
868–889, 2006.

[7] H. Wang, Z. Chen, J. Zhao, X. Di, and D. Liu, “A vulnerability
assessment method in industrial internet of things based on attack graph
and maximum flow,” IEEE Access, 2018.

[8] J. Zeng, S. Wu, Y. Chen, R. Zeng, and C. Wu, “Survey of attack graph
analysis methods from the perspective of data and knowledge processing,”
Security and Communication Networks, 2019.

[9] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska, and W. Xu,
“Automated Security Test Generation with Formal Threat Models,” IEEE
Transactions on Dependable and Secure Computing, 2012.

[10] C. C. Michael and A. Ghosh, “Simple, State-Based Approaches to
Program-Based Anomaly Detection,” ACM Trans. Inf. Syst. Secur., 2002.

[11] L. Costa, J. Barros, and M. Tavares, “Vulnerabilities in iot devices for
smart home environment,” in Proceedings of 5th ICISSP, 2019.

[12] S. Chen, Z. Kalbarczyk, J. Xu, and R. Iyer, “A Data-Driven Finite State
Machine Model for Analyzing Security Vulnerabilities,” in Proc. 2003
International Conference on Dependable Systems and Networks, 2003.

[13] Z.-W. Zhang and Y. Yun-Tian, “Research of attack model based on finite
automaton,” in 2012 National Conference on IT and CS, 2012.

[14] B. D. Davis, J. C. Mason, and M. Anwar, “Vulnerability studies and
security postures of iot devices: A smart home case study,” IEEE Internet
of Things Journal, 2020.

[15] S. Petridou, S. Basagiannis, and M. Roumeliotis, “Survivability analysis
using probabilistic model checking: A study on wireless sensor networks,”
IEEE systems journal, vol. 7, no. 1, pp. 4–12, 2012.

[16] “Common vulnerabilities and exposures (CVE),” https://www.cve.org/.

APPENDIX: ATTACK MODELING USING GRAPH-BASED
FINITE STATE AUTOMATA FOR SHIOT: A BRIEF REVIEW

Our graph-based FSA approach for SHIoT, previously re-
ported in [4], was the impetus for the work in this paper for
use of the framework in Section II and our approach. Briefly,
a finite state automata for SHIoT attack (FSAA) consists of
the tuple (S,Σ, δ, S0,F). where S is a non-empty finite set
of states representing various states of interest in modeling the
attack, while S0 represents the initial state when no attack had
been launched. The finite set of input symbols is given by Σ and
a transition is denoted by δ. The set of terminal states, which
can be one of the potential attack success states or attack failure
states, is denoted by F (⊆ S).

A confidentiality based attack from [4] is shown in Figure 4
with the set of states vulnerabilities along with a Common
Vulnerabilities and Exposures (CVE) number [16] in Table VI.
See [4] for additional details.

Fig. 4: Confidentiality based 9-node attack graph

3rd International Workshop on Internet of Things Management (Manage-IoT 2023) - Workshop of NOMS 2023

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on April 09,2024 at 17:49:29 UTC from IEEE Xplore. Restrictions apply.

