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Abstract—The adoption of digital technology in industrial
control systems (ICS) enables improved control over operation,
ease of system diagnostics and reduction in cost of maintenance
of cyber physical systems (CPS). However, digital systems expose
CPS to cyber-attacks. The problem is grave since these cyber-
attacks can lead to cascading failures affecting safety in CPS.
Unfortunately, the relationship between safety events and cyber-
attacks in ICS is ill-understood and how cyber-attacks can lead to
cascading failures affecting safety. Consequently, CPS operators
are ill-prepared to handle cyber-attacks on their systems. In this
work, we envision adopting Explainable AI to assist CPS oper-
ators in analyzing how a cyber-attack can trigger safety events
in CPS and then interactively determining potential approaches
to mitigate those threats. We outline the design of a formal
framework, which is based on the notion of transition systems,
and the associated toolsets for this purpose. The transition system
is represented as an AI Planning problem and adopts the causal
formalism of human reasoning to asssit CPS operators in their
analyses. We discuss some of the research challenges that need
to be addressed to bring this vision to fruition.

Index Terms—cyber physical systems, resiliency, AI planning,
natural language processing

I. INTRODUCTION

The adoption of digital technology in industrial control

systems (ICS) enables improved control over operation, ease

of system diagnostics, and reduction in cost of maintenance of

cyber physical systems (CPS). However, digital systems also

expose the OT (Operational Technology) networks of CPS to

cyber-attacks. The SQL Slammer Worm attack on the David-

Besse nuclear power plant in 2003 [1], the StuxNet worm

targeting Siemens Step 7 software controlling a programmable

logic controller [2] or the Black Energy malware exploiting

control system software vulnerability in different ICS [3], are

all examples of cyber-attacks on CPS triggered by the use of

digital systems. Such attacks can have very serious implica-

tions on a CPS’s operation especially when the cyber-attacks

trigger safety events either directly or via triggering cascading

failures in the ICS. The emergence of Advanced Persistence

Threats (APT) that can lie under the radar undetected for a

very long time and Live Off the Land Binaries (LOLBins),

where the attacker uses tools that are already present in the

environment compounds the problem since they help facilitate

lateral movements by attackers that can give rise to cascading

failures. There is thus a critical need for operators of CPS OT

networks to be cyber-prepared for resiliency. The first step

towards this goal is to assess the security posture of the OT

networks, what the weak spots are that can be leveraged by

APTs, LOLBins, or other malware to launch cyber attacks

affecting safety, and how to best deploy defenses for resiliency.

One potential approach to this is via Penetration Testing

(or pen-testing). Pen-testing is a widely adopted paradigm for

cyber preparedness evaluation in an IT (Information Tech-

nology) network. Pen-testing, when done well, results in a

comprehensive list of vulnerabilities in the organizational

network that can potentially be exploited by an attacker

including, possibly, physical vulnerabilities that can enable

the launching of cyber-attacks. However, it is a very involved

process with a very broad scope and partly depends on the

rules of engagement with the organization. While several

aspects of pen-testing can be automated, the effectiveness of

pen-testing depends very much on the skill set of the pen-

tester and on the tools used. While pen-testing can produce

a prioritized list of vulnerabilities ordered by their criticality,

differing perspectives of pen-testers on what are the highest

priorities, can result in scope creep. Moreover, pen-testing does

not provide a list of actionable items which would allow what-

if analysis to be conducted. The system administrator has very

little to work with to determine the effectiveness of various

defensive strategies, following a pen-test on their network.

Most importantly, however, pen-testing cannot be exercised

on the live OT network since it can potentially trigger safety

events. Unlike IT networks, OT networks are deterministic and

not designed to accommodate the performance impacts of IT

network appliances. This concern becomes more exacerbated

when considering low-level ICS controller buses where any

effect on determinism within this bus triggered by pen-testing

may cause undesirable effects on the operation of the CPS.

A complementary approach to understanding and mitigat-

ing network vulnerabilities is via attack tree/attack graph

analysis (see, for example, [4]–[11]). Its origins are in fault

tree analysis [12]–[15]. The ICS community has extensively

studied potential problems caused by safety events occurring

because of component failures and accidental human errors.

ICS operations manual frequently provides documentation of

potential safety situations and trains operators to perform

what-if analysis to handle safety events. Fault Tree Analysis

(FTA), a technique developed by H. Watson and Allison

Mearns of Bell Labs for use on the Minute Man Guidance

System in 1962 [12], is one of the most widely used systematic

approaches to determine all credible ways by which an unde-
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sirable failure state may occur in a safety critical ICS. FTA

and related techniques such as Event Tree Analysis can help

to identify critical components, procedures, tasks in ICS, and

combinations of system failures resulting in safety events. FTA

has also been extended for evaluating the frequency/probability

of undesired events occurring that can be utilized for quan-

titative safety and reliability analysis. In the same vein, an

attack graph, also known as a threat graph, exploitability

graph, or vulnerability graph, uses a description of IT assets of

an organization, their configuration, the vulnerabilities present

in those assets and dependencies among those vulnerabilities

to present a picture of how the IT system can be attacked.

Graph analysis techniques can be used on the attack graph to

identify possible attack paths that can be utilized to launch

cyber attacks, including lateral movement attacks. It provides

security professionals with valuable insights into potential

attack vectors and can help prioritize efforts to secure critical

assets effectively.

However, there are several challenges related to the use of

attack graphs for cyber preparedness analysis in OT networks.

Unlike fault trees, there is no uniform formalism for attack

graphs. Different researchers model the abstract notion of an

attack graph in different manners resulting in differing proper-

ties. To the best of our knowledge, there does not exist a formal

attack graph framework that can also model undesirable fault

and failure states in OT networks. Moreover, even today, attack

graph tool support for automated creation, management and

what-if analysis is quite limited. In particular, what-if analysis

tools that provide explanatory feedback about the goodness

of defensive strategies are needed. Explanations are critical

so that the domain experts are convinced that the strategies

suggested by the tool are aligned well with their intuitions

about potential solutions. To achieve this, the human operators

need to be able to relate easily to the machine-generated

explanations, which implies that explanation generators need

to adopt the causal formalism used in human reasoning.

Some other limitations of existing tools include scalability

to large problems and support for model reusability. As a

system changes, for example, when defense placement is

strategized during a what-if analysis, the corresponding attack

graph also changes. Support for incremental updates and reuse

of attack graphs facilitate scalability.

In this paper, we present an Explainable AI approach that

combines the power of Natural Language Processing (NLP)

and AI Planning to enable CPS operators to evaluate and

analyze how a cyber-attack can trigger safety events in the CPS

(that is, the resiliency posture of the CPS) and then interact

with the analysis engine to determine potential approaches

to mitigate the threats. The formal framework, on which this

system is based, is based on the notion of transition systems

[16]. We call this framework Explaianble Resiliency Graph

(ERG). The core design philosophy that we have adopted
for this work, and which has resulted in the choices that we
have made, is that the framework needs to provide human
understandable explanations on how or why it arrived at a
specific analysis result for CPS resiliency. This is a work in

progress and we discuss some of the research challeges that

we are working on this vision.

Figure 1 provides an example of an ERG for a steam flow

control system in a nuclear power plant. An ERG is built

through a composition of attack graphs representing cyber-

attacks in the CPS and fault trees representing failures. NLP

techniques are used to generate both the attack graph portion of

the ERG as well as the fault tree. Referring to Figure 1 the red

dotted lines indicate the points where composition operations

need to be applied to build the ERG. AI planning techniques

are used to perform this composition.

We develop a novel description language that we call

Resiliency Graph Description Language (RGDL) to represent

the ERG-transition system for formal analysis. RGDL is an

extension of the classical Planning Domain Definition Lan-

guage (PDDL) [17] and leverages all its power for solving

AI planning problems. The reasoning engine is based on

AI Planning (which adopts the causal formalism of human

reasoning for deductions). It identifies plans that shows the

various attack paths in the attack graph part of the CPS that

can eventually lead to cascading failures and safety issues

(following the red dotted lines in Figure 1.

We present sketches of an initial proof-of-concept that

allows the operator to interact with the AI planner to query

the underlying transition system and perform what-if analysis.

This analysis provides actionable suggestions from the tool in-

cluding insights into potential attack vectors and help prioritize

efforts to secure critical assets effectively. These suggestions

comprise of a diverse set of solutions each of which can

potentially take the CPS to a safe and secure state. To help

the operator decide which of the actionable suggestions to im-

plement, the toolset provides explanations in natural language.

Since the CPS can evolve over time (for example, when new

vulnerabilities are identified or new components added) we

provide support for incremental updates to the ERG. Figure 2

gives an overview of the ERG workflow.

II. OVERVIEW OF APPROACH

Attack-resilience for complex CPS involves direct action

to be taken based upon a suspected event, which requires

a mitigation response that includes at a minimum, a semi-
autonomous capability. Such semi-autonomous action needs

to provide context and explanation to human operators that a

cyber-attack is occurring that necessitates the needed action

outside the capability of the ICS as well as assurances that

operational impacts are minimized. Moreover, the human oper-

ators need to be able to relate easily to the machine-generated

explanations. This implies that explanation generator need to

adopt the causal formalism used in human reasoning. Our

work is driven by these requirements of semi-autonomous

capabilities.

ERG-based CPS resiliency analysis can be broadly divided

into four stages discussed below and elaborated upon in the

next section, which also discusses the open research challenges

involved in each step that need to be addressed to bring this

vision to fruition.
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Fig. 1: A visualization of modeling cyber resiliency via ERG. Explainable Resiliency Graphs (c) allow

us to compose (⊕ represents composition) Attack Graphs (a) and Fault Trees (b) into a single unified

representation. The dotted lines represent the areas where security and safety are composed.
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resiliency. Step 1 in the Overview of Approach discussion has been omitted in this figure
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Step 1: Modeling CPS Resiliency – We introduce an entirely

new modeling paradigm for cyber-physical systems,

named Explainable Resiliency Graphs (ERG). Under

this paradigm, we combine the information related

to the security posture of a given network, popu-

larly captured using attack graphs, with information

related to safety events, traditionally represented

through fault trees. This presents an entirely new set

of modeling challenges, including capturing how the

components in each part influence the other, consis-

tently capturing qualitatively different information in

a single unified framework, and supporting analysis

over extremely large resiliency graphs.

Step 2: Automated Extraction of ERG Parameters – Even

with a fully specified modeling paradigm, creating

these graphs for large-scale application domains will

remain a substantial challenge. Our initial works

[18], [19] have shown how to create attack graphs

automatically from CVE vulnerability descriptions

using natural language processing (NLP) and AI

Planning. We refine and adopt that work in this

framework. However, the automatic generation of

fault trees remains a mostly unstudied problem. We

have done a pilot study to leverage state-of-the-art

semantic parsing tools, including pre-trained large

language models to extract formal descriptions of

ERGs. However, we have identified several missing

pieces in this puzzle where we plan to use a novel

human-in-the-loop model acquisition method that

will efficiently query domain experts to identify parts

of the graph that may be incorrect or incomplete and

get acquire the information required to fix them.

Step 3: Developing Analysis, Detection and Interdiction
over Resiliency Graphs – We are in the process of

developing a set of analysis and detection algorithms

that allows the stakeholders to use the ERGs in two

unique modes. As part of a set of tools used to

analyze the security and safety posture, this involves

performing worst-case analysis, identifying points of

failure, and more importantly identifying potential

fixes to these problems. Secondly, the graphs can be

used as a way to monitor for and identify potential

attacks or possible failure cascades. As with the pre-

vious use case, we also develop a method to come up

with suggestions to stop the detected attacks/failures.

Step 4 Developing Explanation Generation Methods for
Experts to Support What-If Analysis –. Developing

powerful algorithms to analyze complex ERGs to

detect possible sources of failure or vulnerability

only forms a part of a system to empower users to

leverage the true potential of the proposed model.

To address this gap, we need to develop explanatory

techniques that will help the users better understand

both the analysis results and the suggestions being

made to them. The explanatory algorithms need to

be designed to address the two important challenges
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Fig. 3: Resiliency graph showing how a ICS control valve

failure occurs via a cyber attack

raised by this topic, namely the complexity of the

model itself and the fact that results will be used for

decision-making by users with different backgrounds

and expertise. The former is the result of both the

complexity and scale of modern-day CPS and our

need to consider so many different factors in a

single model. The second challenge is unavoidable

due to the basic reality that the users who are best

positioned to understand and analyze the security

challenges need not be the same as the ones who are

best suited to analyze safety issues and vice versa.

This means the output generated by this system

would need to be analyzed by a team of people

with different backgrounds. As such, we would need

to generate explanations that help build common

ground between these different users.

III. RESEARCH PATHWAY AND CHALLENGES

In the following, we discuss in more detail the technical

approach, identifying in the process some of the research

challenges the approach opens up. Henceforth, we use the

terms Explainable Resiliency Graphs and Resiliency Graphs

to mean the same structure. For this discussion, we use a very

small example. The resiliency graph, which is very tiny part

of a bigger resiliency graph, is shown in Figure 3

A. Step 1: Modeling of Explainable Resiliency Graphs

Existing works in modeling network attacks have mostly

separated the representation of the security posture of the

network, from other potential sources of failure and safety

events. However, past incidents have shown how attackers

could potentially leverage security holes to initiate cascading

failures, that might in turn affect the integrity of the entire

CPS and even result in casualties. Analyzing such potential

scenarios involves a richer modeling framework than what is
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used in practice. The Explainable Resiliency Graph paradigm

is meant to bridge that gap. We start by trying to unify

information that is generally captured through attack graphs

and fault trees.

Attack graphs [20], are traditionally used to capture po-

tential security vulnerabilities present in a given system, and

for the most part capture how an attacker could potentially

exploit them to compromise various components of the over-

all systems. A fault tree [21] on the other hand has been

traditionally used to model potential sources of failures and

dependencies between different events. While both models

could be represented as transition systems with various states

and potential transitions between them, there are qualitative

differences between them that make a combined model tech-

nically challenging.

For one thing, the transitions within the attack graphs

represent intentional actions carried out by an agent trying

to achieve a specific objective, while transitions within fault

trees represent events that are triggered by various physical or

environmental conditions. Any effective modeling techniques

should still retain such qualitative differences as they could

have a profound impact on the potential consequences.

We adapt the classical Planning Domain Definition Lan-

guage (PDDL) [17] as the base formalism to represent ERGs.

PDDL was introduced as a domain-independent method to

represent and specify goal-directed deterministic planning

problems. However, vanilla versions of PDDL is not well-

suited to retain all the qualitative differences between the

different transitions that are possible under this modeling

paradigm. At the very least, we are interested in separating

three classes of transitions, namely, state transitions due to the

attacker’s actions, those caused due to the user’s actions (either

unintended or coaxed by the attacker), and finally events that

are triggered by the occurrence of other physical or environ-

mental events. We have observed that qualitative difference in

these actions could make a considerable difference in the role

performed in various analyses and corrective actions.

We refer to this novel description language as Resiliency

Graph Description Language or RGDL. In particular, we

define a resiliency graph under RGDL using a tuple of the

form R = 〈F,A,U,E, I, T 〉, where F represents the set of

state variables used to describe the transition system, A the

actions available to the attacker, U the actions to be performed

by the user, E events that could occur, I the initial state and

T targets/nodes of importance and interest to the attacker.

Under this definition, F defines the set of possible states in

the underlying transition system, and A ∪ U ∪ E, the set of

possible transitions.

B. Step 2: Automated Extraction of Resiliency Graph Param-
eters

PDDL-like languages have roots in folk psychological mod-

els of action [22] and have been known to boost explain-

ability [23]. Thus, our choice to use languages that build

on domain description languages like PDDL makes it well-

suited for people to manually specify them. Unfortunately, the
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Fig. 4: A flowchart highlighting the process for extracting

the model for the graph. The process involves multiple steps,

with initial models being extracted from various sources.

Information about various historic attacks and failures is used

to validate and test learned models. Finally, domain experts are

queried to identify missing information or to correct potential

mistakes.

sheer complexity of modern-day CPS and the interdisciplinary

nature of ERGs make them a bad candidate for pure manual

declaration. On the other hand, a fully automated approach

to extracting these graphs is also not currently possible. To

address this, we use an expert-in-the-loop graph extraction

pipeline that tries to extract as much of the graph automatically

and queries the expert only when it identifies regions in the

graph that may be incorrect or incomplete. Moreover, even

when it queries an expert, the queries are tailored to best match

their expertise and are posed so as to minimize the cognitive

load imposed on them. Figure 4, presents an overview of the

overall extraction pipeline.

In the first phase of the pipeline, we look at the possibility of

extracting parts of the graph from existing knowledge sources.

Among the components considered, relatively more work has

been done in extracting information related to security aspects.

Vulnerability descriptions have proven to be a particularly rich

source of information about attack graphs. Our own previous

work, such as the AGBuilder system [24] has looked at the

possibility of extracting PDDL description from vulnerability

description and other information sources. However, even

with the previous works in this area, extracting a complete

attack graph remains a challenging problem in the context of

complex infrastructure. When we move over to fault trees,

the problem of extracting relevant information is much less

explored. Unlike the security domain, there have been very few

efforts to consolidate information related to potential safety

events, and there is much more variability with regard to the

specifics of the infrastructure. This remains an open area of

further research. Nonetheless, there exist documents related to

standard operating procedures and safety protocols that could

be used to learn relevant information. We are investigating

how to leverage state-of-the-art, large language model-based

semantic parsers to extract formal representation from such
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unstructured textual sources. We denote the incomplete RGDL

description learned in this phase as R̂.

The next phase of the pipeline takes the extracted model and

tries to identify potential parts that are incomplete or incorrect.

In particular, we perform this analysis by primarily leveraging

two sources of information. First, we try to see if our model

can support and potentially account for historical safety events

and attacks (which are known to still exist in the network). We

use semantic parsers to convert potential textual information

into formal traces that can be validated against R̂. Whenever

we find a trace (i.e., the path through the transition system) π,

which cannot be supported by the current model, i.e π �|= R̂,

we generate a set of the hypothesis set R = {R̂1, ..., R̂k},

where each hypothesis is generated by performing local edits

on the original model and can support the trace in question.

We have observed that at this stage in the workflow we

require expert-in-the loop to correct and refine the extracted

ERG. This would involve presenting parts of the graph (or

its descriptions) and asking the experts to identify potential

mistakes or presenting them with the set of potential hypothe-

ses and asking them to select the model that they believe

may actually be correct. The critical challenges here are to

ensure that queries about a specific part of the model are

only posed to the user with the appropriate expertise and

that the cognitive load posed by the query is minimized. Our

earlier work modeling the expertise of specific users [25],

which could be leveraged to address the former challenge,

while the latter presents a unique set of challenges. While

our group has worked on the use of abstraction as a means

to facilitate presenting relevant parts of the domain model

for correction [26], the heterogeneous nature of the modeling

paradigm presents an additional complexity. Simply presenting

a minimal abstraction of the relevant model component to

the user may not be the easiest way to empower a user to

effectively identify ways to correct the model. Instead, we

will investigate and develop a method that creates abstractions

that are user-specific and takes into account their particular

technical background. For example, when parts of models are

shown to a cybersecurity expert, the system should project

out all but the most critical information about security events.

Effectively, the system will be presenting an abstracted version

of the corresponding attack graph with minimal information

about safety events.

Figure 5 shows the output of the extraction process after it

has been refined by domain experts.

C. Step 3: Developing Analysis, Detection and Interdiction
over Resiliency Graphs

Before we discuss the exact analysis and inference problems

we are studying, let us take a quick look at the three main

components used to capture transition within RGDL and talk

about their qualitative nature:

• Attacker Actions A: These correspond to the various

actions that can be performed by the attacker. These

actions will have consistent semantics across all the

problems discussed in this section; namely, an intentional

Fig. 5: RGDL model of ERG from Figure 3 automatically

generated
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action performed by an attacker to achieve the attacker’s

objective, which is to compromise some of the targets of

importance to the attacker.

• User Actions U : These are the actions performed by the

users of the system. These actions are important to model;

in many cases, attackers require or leverage user actions

towards achieving their own objectives, for example to

deliver an attack payload. While for some analysis user

actions may be modeled as intentional actions, they may

also be modeled as stochastic transitions that are triggered

in response to attacker actions or because of reaching

certain states. Here the specific probabilities associated

with the transitions may be automatically learned by

using user activity logs.

• Safety Events E: There are various safety or fault events

that may be triggered intentionally by attackers or in

response to other events or even randomly. As with

the user actions, based on the form of the problem

being considered, the events may either be treated as

an intentional action or a stochastic transition. The exact

probabilities here are either learned from the different

procedural documents, from experts, or even from system

logs of previous events.

The Explainable Resiliency Graph provides us with a basis

for developing an extremely diverse set of highly valuable an-

alytical tools. Below we discuss some of the more immediate

and important ones that we have started investigating from the

point of view of both actionability and usefulness in building

a good understanding of the security/safety posture.
a) Worst-Case Analysis: One of the fundamental ques-

tions that we can ask for resiliency analysis is given an ERG,

what is the worst damage an attacker could bring about. Here

we are not only anticipating the potential attack paths that an

attacker could utilize but also trying to account for potential

events and user actions that could inadvertently occur that

may compound and magnify the effectiveness of the attacker.

We perform this analysis by treating each of the three sets

of transitions, A, U , and E, as intentional actions an attacker

could wield to compromise the targets. This in a sense captures

the extreme case where everything works out in their favor.

This problem will be modeled as a deterministic planning

problem.
b) Average-Case Analysis: As alluded to previously, the

worst-case analysis looks at the most extreme failure scenarios.

In reality, this scenario could be extremely unlikely and would

require a number of factors outside the control of the attacker

to occur. While useful, this may not really reflect the most

common failure and attack modes. To capture this, we can

perform an analysis where only the attacker actions are treated

as intentional actions, but the events and user actions are

treated as stochastic effects that may or may not be triggered

based on probability. This formulation allows us to compute

various information, including most likely attack path, most

likely failure and/or compromised assets, the expected value

associated with each attacker action, and so on. This problem

will be modeled as a probabilistic planning problem.

c) Attack-triggerd Cascading Failure Analysis: The pre-

vious analysis corresponds to ones that are performed pre-

emptively to understand the security posture and the potential

of cascading failures in a given system. In addition to such

analysis, we need a real-time method to detect when the CPS

may be under attack. We need to detect whether observed

events may be part of some ongoing attack or simply unrelated

events. We will be building on existing plan recognition

work [27] to support such detection. Like the average case

analysis, we model user actions and safety events as stochastic

transitions and look for the most plausible set of attacker

actions that can explain the given set of observations. An

important aspect where more research is needed, is quantifying

the likelihood of this attack. We can do this quantification

either by using known models of attackers or by ascribing

rational behavior to the attacker, i.e., an attack is less likely

if there exist more effective ways of achieving the possible

attacker goal. We can also perform similar detection of the

start of a catastrophic cascade of safety events and failures.

Fig. 6: Overview of the explanation process where the user’s

background is taken into account to generate explanations

tailored to a specific user and their expertise.

d) Attack/Failure Interception and Disruption Analysis:
Once an attack or failure is detected, the next course of action

is to come up with a series of steps to stop the attack or

failure. Such plans of recourse will consist of actions that

are outside the set of actions considered within the ERG

itself. For example, it may involve potentially disconnecting

a compromised system from the network or changing user

behavior. Regardless, each of these actions would correspond

to modifying the resiliency graph such that the current attacker

path (or the potential series of failures) is disrupted. As such,

we can carry out the analysis of identifying such plans using

the resiliency graph itself. We have done extensive previous

work on model-space search problems [23], which looks at the

meta-search problem of modifying a given planning model to

get ones with different properties. We are be extending these

works to support updating resiliency graphs.

D. Step 4: Developing Explanation Generation Methods for
Experts to Support What-If Analysis

We are in the process of developing explanatory algorithms

to support solutions generated for each of the problems de-

scribed in the previous step. We are leveraging our previous

works in developing explanation generation for planning-based
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systems and for decision-support systems [28], [29]. We adapt

existing planning formalisms and extend those to develop

explanation generation methods.

a) Generating Explanations Tailored to the Expert’s
Background: One of the critical challenges that we are faced

with in our work is that any observation made about the

system would probably be made by a team of experts with

distinct backgrounds. This means that we need to generate

multiple explanations each tailored to the unique background

of the user. At the same time, we also need to make sure

that over time the system is able to build a common ground

between the users so they can agree on the final decision. This

is a challenging problem and we welcome the community’s

suggestions in this matter.

For the time being, we are leaning on a strategy similar to

the one discussed for Step 2, as part of the system to query

the experts about the model. Specifically, we use abstractions

of the graph that takes into account the particular technical

background of each user. The abstraction will only contain

information about parts outside their field of expertise to the

degree it is needed to make sense of the specific analysis. The

explanations will be generated using this abstraction. The user

will also have the ability to concretize the model incrementally

thus adding more information about other components of the

system. This would allow each user to understand more about

the overall system.

b) Supporting What-If Analysis to Strengthen Resiliency
Graph: Our objective here is to not just generate explanations

that allow the users to better understand the properties of the

current system, but also to provide them the ability to update

the system, so as to fix any potential issues that may have

been detected as part of the analysis. The planned approach

involves two closely related processes. First, the system is

going to identify a set of ways through which the overall

system could be made more robust. Next, the options would be

presented to the user along with explanations as to how these

changes would improve the overall system. The experts then

can decide which of the changes they want to implement. For

analysis, we can use methods similar to the one developed

for the previous steps. We are interested in more than just

disrupting a specific path. So, we consider broader goals like

making the system more robust as measured under the worst-

case analysis or the average-case one. Here, we will also have

the additional objective of identifying multiple diverse ways of

updating the graph to achieve the desired objective. By giving

the users different options, they would be able to reason about

the trade-offs of going with one set of updates over another.

IV. CONCLUSIONS

As more and more industrial control systems (ICS) become

digitized they become targets of malicious cyber attacks. The

potential for disruptions in these cyber physical systems (CPS)

can be attributed to the dependence and the vulnerability of

the networks interconnecting the physical plants and control

centers. Such attacks can have very serious implications on

a CPS’s operation especially when the cyber-attacks trigger

safety events either directly or via triggering cascading failures

in the ICS. Therefore, there is a significant need for deeper

insights into cyber risks to cyber physical systems – insights

that help operators to determine what the weak spots are that

can be leveraged by APTs, LOLBins, or other malware to

launch cyber attacks affecting safety, and how to best deploy

defenses for resiliency of these CPSs.
In this paper, we present an Explainable AI approach that

combines the power of Natural Language Processing (NLP)

and AI Planning to enable CPS operators to evaluate and

analyze how a cyber-attack can trigger safety events in the

CPS (that is, the resiliency posture of the CPS). The approach

consists of a model, called Explainable Resiliency Graph, that

expresses the dependencies between cyber attack and ICS

failure. The model is supported by NLP and AI planner based

tools for automated generation of the model for a specific CPS

as well as tools that allow the operator to interact with the AI

planner to query the underlying ERG transition system and

perform what-if analysis. This analysis provides actionable

suggestions from the tool including insights into potential

attack vectors and help prioritize efforts to secure critical assets

effectively. These suggestions comprise of a diverse set of

solutions each of which can potentially take the CPS to a

safe and secure state. To help the operator decide which of

the actionable suggestions to implement, the toolset provides

explanations in natural language.
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