
Protecting Cyber-Physical System
Testbeds from

Red-Teaming/Blue-Teaming Experiments
Gone Awry

Md Rakibul Hasan Talukder(B), Md Al Amin, and Indrajit Ray

Colorado State University, Fort Collins, CO 80523, USA
{rakibul.talukder,md.al amin,indrajit.ray}@colostate.edu

Abstract. Many cyber-physical systems (CPS) are critical infrastruc-
ture. Security attacks on these critical systems can have catastrophic con-
sequences, putting human lives at risk. Consequently, it is very important
to pace CPS systems to red-teaming/blue teaming exercises to under-
stand vulnerabilities and the progression/impact of cyber attacks on
them. Since it is not always prudent to conduct such security exercises on
live CPS, researchers use CPS testbeds to conduct security-related exper-
iments. Often, such testbeds are very expensive. Since attack scripts used
in red-teaming/blue-teaming exercises are, in the strictest sense of the
term, malicious in nature, there is a need to protect the testbed itself
from these attack experiments that have the potential to go awry. More-
over, when multiple experiments are conducted on the same testbed,
there is a need to maintain isolation among these experiments so that
no experiment can accidentally or maliciously affect/compromise others.
In this work, we describe a novel security architecture and framework to
ensure protection of security-related experiments on a CPS testbed and
at the same time support secure communication services among simul-
taneously running experiments based on well-formulated access control
policies.

Keywords: CPS · Testbed · Security experiment · Authorization ·
Isolation · Tuple space

1 Introduction

A Cyber-Physical System (CPS) consists of many individual units or systems
and often is a critical infrastructure. Some example of such CPSs are power
plants and distribution grids, gas transmission systems, traffic control systems,
water treatment and supply systems, transportation systems, and others [2,10].
A single security vulnerability in CPS can lead to catastrophic consequences,
which ultimately can cause considerable financial and business loss, human lives,
suffering, and others [7,8]. Thus, it is paramount that CPSs are free from security

c© Springer Nature Switzerland AG 2022
C. Su et al. (Eds.): ISPEC 2022, LNCS 13620, pp. 140–157, 2022.
https://doi.org/10.1007/978-3-031-21280-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21280-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-21280-2_8

Protecting CPS Testbeds from Experiments Gone Awry 141

vulnerabilities. However, it is challenging to test a functioning CPS to identify
security issues or weaknesses. This is because a live CPS cannot afford even a
single error or mistake introduced while performing the testing; there is a real
possibility of the testing process damaging the CPS. Consider, for example, a
security experiment that needs the introduction of spoofed sensor measurements
in the control network of a CPS to simulate an attack. Allowing this experiment
to be conducted on a live system will cause it to malfunction. Unfortunately, the
CPS can not be stopped or interrupted for this purpose. Moreover, such security
testing needs to be done periodically since security threats are continuously
evolving.

CPS testbeds play an important role for the security analysis of the CPS
[14]. The testbed environment emulates the actual behaviors of the different
CPS components and simulates their interactions. This allows researchers and
engineers to identify security issues in the designed systems before deploying
them in the real world and continuously update the knowledge with evolving
threats. Since the testbed mimics existing systems’ behaviors, it is essential to
ensure that different experiments launched in the testbed environment reflect
real-world behavior as closely as possible. This raises significant challenges in
the design of the CPS testbed itself.

The CPS testbed provides an environment to conduct experiments to study
the behaviors of the concerned systems. Researchers [6,11–13], have identified
several requirements for testbeds to conduct CPS centric experiments. Fidelity,
repeatability, scalability, adaptability, cost-effectiveness, measurement precision,
diversity, and safe experiment execution are the major requirements. These
requirements form the minimum set to conduct the CPS experiments effectively.
However, these do not fully satisfy the requirements for cybersecurity-related
experiments, those requirements are not enough to ensure the security of the
security-oriented testbeds. Researchers also have to ensure that one experiment
can not get data from another experiment without authorization (intentionally
or unintentionally) [9]. Also, shared hardware resources can be an attack vector
or data leakage platform.

For security centric experiments, it is important to ensure that one experi-
mental process cannot go outside of its run-time memory. If this is allowed to
happen, then it can cause unintended program execution or memory corruption
of other infected experiments’ memory and processes. This would ultimately
produce erroneous results. Therefore, we must deploy individual experiments
in isolated environments to confine operations and data inside the allocated
working memory area. It may require different components of a sizeable cyber-
physical system to be deployed as multiple experiments, and these experiments
may need to share specific data among them. An experiment can utilize another
experiment’s data to complete a specific task. Although different units depend
on each other to reflect the whole system’s activities, ensuring safe communica-
tion to exchange information among the isolated components is necessary. It is
impossible to provide a communication mechanism among isolated nodes using
inter-process communication (IPC).

142 Md. R. H. Talukder et al.

In this paper, we propose a novel communication design leveraging the tuple
space model to provide inter-experiment data sharing where experiment nodes
are deployed in isolated manner. The idea of classic tuple space is based on the
Linda Programming Model [5]. Our proposed framework ensures the reliability
of the whole system incorporating the mechanisms of isolation of the nodes,
safe communication among experiments, and an authorization module with well
formed access control policies. Specific contributions of out work are noted in
the following.

– Identifying design requirements for security experiment-oriented testbed.
– Proposing a novel design of inter-experiment secure communication leveraging

the concept of tuple space.
– Modeling access control system to allocate system resources for the experi-

ments and approve inter- communication requests.

2 Threat Model Relevant for the CPS Testbed

Before delving into our contributions, we would like to explain the threats that
a security-oriented testbed must guard against. Experiments perform various
attacks on different simulated physical models of different devices in the testbed.
If an attack goes beyond any experiment run-time environment, it causes severe
damage to another experiment, like modifying configuration files, input data
sets, output results, and others. The testbed threats can mainly be classified
into two groups: (i) outsider threats and (i) insider threats and are discussed in
the following.

2.1 Outsider Threats

A testbed is vulnerable to threats that are initiated from outside of it. Malicious
actors from the outside world can exploit the testbed to compromise it and gain
confidential information from it. Outside attackers can compromise the testbed
by exploiting vulnerabilities in the testbed’s hardware and software resources.
In this work, we assume the testbed is secured from outside threats.

2.2 Insider Threats

Insider threats are originated within the testbed itself. Multiple experiment
nodes share testbed resources like hardware, software, attack library module,
network I/O, and other essential resources while deployed on the testbed and
executed at the same time. Without any preventive mechanism, an experiment
can access information from another experiment by unauthorized means and
can push malicious data into another experiment’s memory space. We classify
testbed insider threats into three groups: (i) confidentiality threats, (ii) integrity
threats, and (iii) availability threats.

Protecting CPS Testbeds from Experiments Gone Awry 143

Confidentiality Threats: Critical Cyber Physical Systems (CCPS) have many
critical units to provide services. Since the testbed simulates the actual behaviors
of those systems, it can hold notable data about those critical units and pro-
prietary information about the system organization. If a malicious entity gains
access of an experiment node, it may also obtain significant architectural infor-
mation or system vulnerabilities. This reveal of system knowledge may help the
malicious entity to plan a more sophisticated attack in the testbed. Moreover,
malicious organizations can use that information to gain business profits and
defeat competitors in business market competition.

Integrity Threats: An erroneous input data or process can introduce faulty
results or add bias to the experiment results. An experiment can intentionally or
unintentionally violate the data integrity of other experiments, if attack and data
isolation are not maintained properly. As experiments share the same testbed
resources, if a set of attacks goes beyond a component’s memory scope, then an
erroneous evaluation may take place.

Availability Threats: A malicious experiment can hold the computing
resources intentionally for indefinite time period to make the service/resources
unavailable for other experiments. In this scenario, other experiments remain in
the waiting queue for log time because of resource shortage. Our current scope
of proposed method does not deal with this kind of threat.

3 Overview of Our CPS Testbed Structure

As most CCPSs are distributed and networked, a testbed should imitate the
functionalities of a distributed networked system. Otherwise, the threats related
to any distributed networked system can not be explored while performing secu-
rity experiments in the testbed. This is why, in order to provide a platform
for message-passing capabilities among the nodes, a network event simulator
is required. This simulator is also responsible for managing and distributing
resources among the experiment nodes. A bunch of experimental nodes together
build the whole structure of a cyber-physical system. Figure 1 illustrates different
components of a testbed that we require. The major components are (i) testbed
controller, (ii) experiment server, (iii) virtualization of experiment nodes, (iv)
experiment controller layer, and (v) experiment nodes.

Fig. 1. Testbed structure.

144 Md. R. H. Talukder et al.

The testbed controller (i) is responsible for managing resources for exper-
iment nodes (v). It also provides services to allocate network address spaces
for the experiment nodes as required by the experiment requirements. The con-
troller has overall knowledge of the availability of resources, user space, node
visualization, shell management, etc. It must be installed on a machine other
than the experiment servers, allowing us to use resources in a request-response
manner. This separation prevents experiment nodes from manipulating the con-
trol server’s memory space. The system on which this controller is installed is
known as the testbed control server.

Experiment servers(ii) provide the computing platform for experiment nodes.
A single or multiple machines combined can provide the processing capability
for experiment nodes. The number of experiments and connectivity among them
is generally greater than the actual physical resources. Therefore, an abstrac-
tion of virtual machines (iii) and networking topology are supported based on
containerization or hypervisor. One control node mapped to each owner of the
experiment(s) will reside in the experiment control layer(iv). It is responsible
for maintaining a gateway to the experiment space containing multiple nodes.
A user, the experiment owner, can instantiate multiple nodes for the experi-
ment. An experiment cannot have more than one owner. Experiment nodes are
allocated resources from the experiment server(s). A hypervisor will run on the
hardware of the experiment server to provide virtualization to the nodes.

4 Cybersecurity Centric Experiment Support in Testbed

There are some essential requirements for the testbed which play vital roles
in providing a secure, efficient, and effective simulation environment and pre-
venting improper experiment results. The most common requirements, iden-
tified by researchers [6,11–13], are fidelity, repeatability, scalability, flexibility,
cost-effectiveness, measurement accuracy, diversity, and safe execution of experi-
ments. In the following, we identify some essential cyber security-oriented testbed
requirements in addition to the above-mentioned requirements. We also discuss
their impact and influence on the testbed environment for conducting cyber-
security experiments in a safe manner.

Nodes and Experiments Isolation: To prevent unintended or malicious data
exchange across experiments, an isolation mechanism is required to protect the
data and process of an experiment. Assuming that each experiment has a single
owner, this grants control over the nodes on which the experiment is executed.
No inter-experiment network communication is allowed unless an authorized
mechanism supports one. Moreover, parallel execution of processes (component
functionality) on a single node may increase the risk of unintended influence.
However, initializing an isolated container or VM per component can provide an
extra layer of control and separation from the other components’ functionality.

Secured Inter-Experiment Communication: Each experiment deployed on
the testbed may represent a single component of an extensive system. Because

Protecting CPS Testbeds from Experiments Gone Awry 145

separate units rely on one another to represent the activities of the entire sys-
tem, it is necessary to ensure secure communication between the experiments.
But before one experiment collaborates with another, a coordinated approval is
necessary to make the collaboration secure. Moreover, the testbed must ensure
the communication messages’ confidentiality, integrity, and availability. Viola-
tion of these three aspects of security can compromise sensitive information or
produce incorrect results. Since experiment outputs influence the real CCPS
design, it would be vulnerable when erroneous results are considered to design
and deploy the real system.

Attack Libraries: Users need to launch multiple attacks on different experi-
ments based on the deployed system components in the testbed. Support of built-
in attack libraries provides accessible interfaces to perform attack experiments.
Distribution and execution of attack libraries can be done in three ways:(i)
scripts provided and run by the testbed, (ii) scripts pulled from third-party orga-
nizations, and (iii) scripts developed by the owner. The best practice is that users
don’t need to write scripts or access third-party sources. Before adding attack
scripts to the testbed, they must be tested and evaluated correctly to ensure
their intended outputs. Also, the testbed must maintain attack script integrity
once they are included in the testbed.

Monitoring Module and Attack Analytic: An experiment owner can spawn
a dedicated monitoring node with predefined objectives. The monitoring module
performs tasks to collect and analyze experiment activities. An attack analytic,
a part of the monitoring module, generates insights for further actions with
visualization and relevant reports from the collected data.

Experiment Checkpoints: Sometimes it is necessary to roll back experiments
to a certain executed state so that users can review experimental decisions and
reconfigure the setup. Experiment checkpoints are necessary to recover from
wrong states caused by cybersecurity experiments [4]. They also provide a quick
recovery option so that experiments become fault-tolerant.

Attack Confinement: Various security analyses are carried out across multi-
ple experiments based on the deployed system components at different nodes.
But security attack experiments may attempt to expose the component’s secu-
rity flaws. Attack scripts are executed with predetermined actions to observe
their consequences on a predefined perimeter of the system. It is essential to
protect the testbed to confine an attack and its effect to prevent intentional or
unintentional damage to another experiment. So an attack can not go from one
experiment run-time environment to another without proper authorization.

Experiment Data Confinement: Each experiment node has a different set
of data, like configuration and design files, experiment results, attack scripts,
etc., containing sensitive information about the system organization. Any data
leakage event may compromise the sensitive information, which can cause many
unwanted consequences. Moreover, data integrity is also essential to ensure that
experiments generate correct results, which are considered while making design
decisions in a real CCPS system to protect it from known and unknown security

146 Md. R. H. Talukder et al.

threats. However, data integrity may also be tampered with while data is shared
and processed across experiments. Hence, the testbed needs to avoid these data
leakage events where isolation can provide data confinement services.

5 Experiment Communication Model

Experiments are deployed as a combination of isolated nodes in the testbed.
An isolated node of an experiment cannot communicate or share any data with
other experiment nodes using the inter-process communication (IPC). But there
are some scenarios where experiments need to exchange information to com-
plete tasks. In this section, we identify and explain two types of communication
required for our proposed security framework of communication in the testbed
environment. They are: (i) coordination communication and (ii) collaboration
communication.

Suppose, two experiments are active at the same time on the testbed and
one experiment needs to access some data that another experiment contains.
Any kind of communication that involves two nodes from different experiment
is supported by the combined execution of coordination and collaboration com-
munication. The coordination communication model (illustrated in Fig. 2) is
occurred first to ensure the availability of resources, approval of the communica-
tion from etc. The actual intended communication or data sharing will not start
before the coordination completes and the approval is received. Collaboration
communication (illustrated in Fig. 3) starts when coordination is complete and
nodes have received approval in the completed coordination process.

Fig. 2. Coordination communication.

Coordination Communication: A control node performs the main role in
this communication model, where it sends predefined control messages to/from
other experiment nodes. A control node acts as a coordinator on behalf of a
user to initiate, manage, and terminate experiments in the testbed environ-
ment. A control node can send/receive coordination information (data access

Protecting CPS Testbeds from Experiments Gone Awry 147

request, broadcast request, node summary, etc.) to/from the experiments it con-
trols or the other control nodes. The control node also expects feedback if it
sends messages to other control nodes or experiments. Figure 2 depicts the coor-
dination communication model where two types of coordination communication
may occur: (i) control-to-control, (ii) control-to/from-experiment. In coordina-
tion communication, no experiment data is shared. Coordination communication
should occur first if two experiments need to collaborate (share data).

Fig. 3. Collaboration communication.

Collaboration Communication: The actual data transfer, labelled as col-
laboration of experiments, happens between two experiment nodes in this type
of communication. No collaboration occurs without executing the coordination
communication beforehand. In the collaboration communication, no control node
is involved. The solid bi-directional arrows in Fig. 3 indicate this native collab-
oration where experiments under the same control collaborate (data transfer)
with each other. In foreign collaboration communication (depicted in the Fig. 3
with dotted arrows), experiments from one control can communicate with exper-
iments from another control node.

6 Overview of Experiment Execution on Testbed

In this work, we provide a system design for the testbed to provide control
over communication among the experiments. Our proposed approach for inter-
experiment communication leverages the technology of tuple space in an isolated
environment. We assume that the testbed already has the facility of providing
virtualization and isolation of nodes.

Experiment Initialization: When an owner wants to create experiments, a
control node (allocating an isolated node) is instantiated first. A secure communi-
cation channel between a user and a control node is established to exchange nec-
essary information. A control node is responsible for managing multiple experi-
ment nodes for its owner. It passes a resources and privileges allocation request

148 Md. R. H. Talukder et al.

containing the necessary node configuration from the owner to the authorization
module. After getting the approval, multiple isolated nodes are allocated with
a defined networking topology among them. For each initialized node, a tuple
space is initialized, which is required for future coordination or collaboration
communication. Thus, an experiment is initialized in the testbed.

Inter-Experiment Secure Communication: When two nodes from different
experiments (owned by the same or different user) need to communicate, secure
communication via tuple space is used. A tuple space is a service that provides a
dedicated memory region in the isolated node’s local memory space to store data
or remove data when required. Only a mapped node itself and the tuple space
manager (TSM) can access its memory region and perform an action on it. All
the operations with the tuple space by TSM or the node itself are assumed to be
secured. In this mechanism, two experiment nodes do not directly communicate
with each other; rather, TSM (assumed as trusted) passes information from one
tuple space to another.

Authorization of Communication: It is reasonable to assume that the com-
munication between all the pairs of nodes from different experiments is not
allowed directly. Whether communication between a pair of nodes is allowed or
not is defined by the access control policy. When one node needs to access infor-
mation held by another one from a different experiment space, a communication
request is sent to the authorization module via the control node. The approval
decision is sent back to the control node after evaluating the predefined access
control policy. The process of approving resource allocation undergoes the same
approval procedure.

7 Inter-Experiment Secure Communications

Three types of communication channels are notably used in the testbed to fulfill
the requirements of communication nature. Nodes from the same experiments
communicate with each other via standard or specialized networking protocols
without prior approval (called intra-experiment communication, illustrated as
a dotted line in Fig. 4). Communication is performed using the IP address or
hostname of the nodes.

The secured communication between the authorization module and any con-
trol node (illustrated as a solid arrow in Fig. 4) is another type of channel. The
third type of communication is between two tuple spaces. Each node (experiment
or control) is mapped with a tuple space (illustrated as a rectangular purple region
attached to each node). The details of tuple space communication managed by a
Tuple Space Manager (TSM) are described in Sect. 8. Figure 4 illustrates the step-
by-step process of inter-experiment communication involving different channels
and related components. The steps are explained in the following:

Send Data Access Request (DAR): The data requester node sends the
request information to the control node of its own experiment space (we call it
the requester control node) first, leveraging tuple space communication (step 1

Protecting CPS Testbeds from Experiments Gone Awry 149

Fig. 4. Inter-experiment communication flow diagram.

from Fig. 4). The data requester does not know which node has the specific type
of data that the requester wants. It only informs its own control node about the
requirements of the specific data type. And in return, it only expects the identity
of the data-holder tuple space so that it can start communication with it. No IP
address or machine address of any node is disclosed in the whole communication
process.

Broadcast DAR to Other Control Nodes: After receiving the DAR, the
control node looks for the identity information of the requested data type from
the past communication history that is stored in the resource config. A resource
config file is maintained at every control node to provide necessary informa-
tion about tuple space (TS) identities of experiment nodes it controls, experi-
ment identities, mapping information between nodes and experiments, type of
data each node holds, past communication history, TS identities of other control
nodes, etc. This resource config file is updated from time to time if any event
occurs at its own experiment spaces or other control nodes so that the config
information remains consistent. Resource config files can also be updated when
any previous approval decision is changed. If any approved active tuple space is
found from the history as a data holder, no further approval is necessary. The
TS id of the data holder is returned to the requester (go to step 6 as illustrated
in Fig. 4). But if there is no history of prior approval of the same DAR, then a

150 Md. R. H. Talukder et al.

broadcast to all the other control nodes takes place (step 2 from Fig. 4). It relays
the same message of DAR in this broadcasting phase.

Return Data/Resource Availability Information: After getting a broad-
cast DAR from any other control node, the receiving control node will look for
the availability of the data type in its own resource config file. If there is any
experiment node that holds the requested type of data, the corresponding con-
trol node will find that information in its resource config file and return the TS
id of the data holder along with other information (experiment id, control node
id, etc.) back to the requester control node. If a receiving control node finds no
data availability of the requested type, ‘NOT AVAILABLE’ is sent back (step 3
from Fig. 4).

Send Approval Request to the Authorization Module: Now the requester
control node has the information (node TS id, experiment id, etc.) about the data
requester and data holder. Using the secured communication channel already
established between the control node and the authorization module, an approval
request is sent to the authorization module to assess whether the requested data
from the data holder can be accessed or not. (step 4 from Fig. 4).

Return Approval Decision: After receiving an approval request from a control
node, the authorization module intends to check if the request complies with the
access control policies. Details of the authorization module and access control can
be found in Sect. 9. The approval decision is notified to the tuple space manager
to update the approved communication list. Finally, the approval decision is sent
back to the requester control node (step 5 from Fig. 4).

Return TS Id to Requester: Before passing the approval decision to the data
requester node, the control node stores this information in the resource config
file for future use. If the DAR is approved, the TS id of the data holder node is
included in the approval response message. If the DAR is denied or data is not
available, DENIED or NOT AVAILABLE is included in the approval response
message. No further communication takes place; this flow terminates here.

Send Data Request to Data Holder: If the DAR is approved, the awaited
communication via tuple space takes place now. First, a data request message is
passed from the requester to the holder via tuple space manager. This message
includes the holder’s TS id and data type.

Return Result to Data Requester: In response to the data request sent by
the requester, the requested result is passed from the holder to the requester.

8 Testbed Tuple Space Design for Isolated Experiments

The tuple space model provides a mechanism which allows experiment nodes
placed in an isolated environment share data without using any direct commu-
nication channel. In the following, we discuss the tuple space manager, tuple
space operations, and tuple space transactions.

Protecting CPS Testbeds from Experiments Gone Awry 151

8.1 Tuple Space Manager-TSM

The TSM is a secured and trusted entity that performs data transfer operations
from source tuple space to destination tuple space. A secured entity protects
data from being modified or revealed to illegitimate subjects. Also, it does not
analyze the tuple space content (called tuple) to disclose data to other enti-
ties or to learn more about data for itself. It needs to read a tuple from the
sender tuple space and add it to the receiver tuple space. There is only one
global TSM in the proposed security-oriented testbed. The TSM maintains an
approved communication list that gets updated by the authorization module
from time to time. The list is essential to crosscheck the authorization status
of the incoming request to prevent malicious transactions.

8.2 Tuple Space Operation

The proposed framework supports three basic tuple space operations: (i) write,
(ii) take, and (iii) read and described in the following.

Write(tuple): This operation provides the functionality to add a tuple within
the mapped tuple space. It does not modify the tuple space contents. The sender
node and the tuple space manager can execute this operation. The sender node
uses this to add the tuple into the tuple space it owns. The TSM executes this
operation by adding the tuple in the receiver node’s tuple space.

Take(template tuple): This operation is called to execute an associative search
for a tuple that matches the template. Once found, the tuple is deleted from the
space and then returned to the tuple space owner’s run-time memory. Only tuple
space owners can use this function to remove tuples from their tuple space. The
Tuple Space Manager cannot execute this operation because TSM does not have
any rights to remove tuples from any tuple space.

Read(tuple): To read from the sender’s tuple space, the TSM executes the read
operation. This operation gets a tuple back from sender’s tuple space to TSM’s
own memory space without removing from the source tuple space.

8.3 Tuple Space Transaction

This section provides the illustration (depicted in Fig. 5) of a tuple space transac-
tion for communication between two isolated nodes. The tuple space manager is
the main medium for passing contents(tuple) from sender tuple space to receiver
tuple space. The TSM has access to all the tuple spaces whereas the nodes can
access their respective ones.

There are two phases in communication: the request phase and the response
phase. In the request phase, the sender node sends a message to the receiver
node. In the response phase, the receiver node returns a message to the sender
node. The returned response can be completely new information or serve as
an acknowledgment for the tuple that has just been received. After sending
the response message, the communication flow is terminated. Both request and

152 Md. R. H. Talukder et al.

Fig. 5. Tuple space transaction.

response phase execute the same transaction process to share information which
are depicted in the Fig. 5. If a node acts as sender in request phase then it is
receiver in the response phase and vice versa.

9 Authorization Module (AM)

The authorization Module’s entire structure and functionalities are explored and
illustrated in this section, including the necessary examples. The resources and
privilege allocation method are discussed to construct an isolated space for each
experiment.

9.1 Experiment Resources and Operations

We need to define the resources required and the operations performed by the
experiments. The authorization module acts as a reference monitor to con-
trol the operations of resources requested by the nodes. An experiment needs
multiple hardware and software resources with different privileges to perform
operations to complete the scheduled tasks. The control node is responsible
for identifying and releasing both resources before an experiment. Some of the
resources required by the experimental nodes to complete experiments are net-
work topology configurations, internal memory, disk space, simulated physical
models, attack libraries, PLC program control code, proprietary information,
snapshots, loggers, status logs, tracers, experimental results, and others.

The experiments in this model perform three operations: (i) read operation,
(i) write operation, and (i) execute operation. The read operation accesses various
files and resources, such as configuration files, input data, programs, and so on.
Experiments use write operation to write output results, modify configuration
files, adjust input parameters, and so on. Finally, the execute operation allows
experiments to run various attack scripts, simulated physical models, and other
processes.

9.2 Resources and Privileges Allocation

A control node (CN) determines an experiment’s required resources and priv-
ileges. After selecting the needed resources and rights, CN securely sends the

Protecting CPS Testbeds from Experiments Gone Awry 153

list to the authorization module. In Algorithm 1, the details of resource and
privilege allocation processes are given. Both the control node and the autho-
rization module ensure that no experiment is given root permission or excessive
resources and rights than required. In addition, the control node can terminate
an experiment node after the simulation is completed.

Algorithm 1: Resources and privileges allocation
Input : A list of resources (R) and privileges (P), and experiment id m.
Output: IsolatedNode for the experiment m under control node i.

1 Initialization:
2 R ← {R1, R2, R3,Rr},
3 P ← {P1, P2, P3,Pp};
4 CNi → AM ;
5 AM checks resources’ availability and verify resources and privileges legitimacy

for the CN;
6 if resource available then
7 AM executes required OS command with R and P ;
8 IsolatedNodei,m is deployed;
9 AM returns a success message to CN with contained id;

10 else
11 AM returns an error message to CN;
12 end if

9.3 Relationship Between Control Node, Experiments, and
Subjects

The distinction between control nodes, experiments, and subjects is fundamental
to the authorization module of this work. The relationship between control node,
experiments, and subjects is depicted in Fig. 6. Usually, each node can perform
three operations in the testbed, but in data sharing, only read operation is
permitted. The other two operations, write and execute, are not allowed for
data sharing.

Control Node: Every user has one control node, which acts as a single identity
in the testbed environment. An authorized organization has only one control
node but multiple control nodes. Violation of this requirement is often the cause
of security violations in the proposed system.

Experiments: Each control node may have several experiments associated with
it. On the other hand, one experiment must not be mapped to more than one
control unit. Therefore, each experiment associated with the control node gains
different resources and privileges based on its functionalities.

Subjects: A subject is a program in the system being executed. An experiment
can generally spawn several subjects, but each subject is associated with only one
experiment. A subject runs with all the privileges of its associated experiment.

154 Md. R. H. Talukder et al.

Fig. 6. Relationship between control node, experiments, and subjects.

9.4 Object Classification

To maintain data security and privacy, we classify objects(data) into three main
categories. The object classes are the conflict of interest class, agreement class,
and open class.

Conflict of Interest Class: The member objects of this type of class are in a
conflict of interest and cannot be shared among their owner.

Agreement Class: Objects labelled with this class are in an agreement and
can be shared among the agreement signing parties.

Open Class: Object data tagged with open class is for all. Any control node
can send requests to get the data.

9.5 Control Node Identification

Each control node is labeled as a member of the conflict of interest class and the
agreement class. The authorization module considers the control node’s identity
when making a data-sharing decision where the sender and receiver are from
different control nodes. Experiments or subjects are not considered. Because
experiment nodes from the same control node can share information without
regard to security or policy constraints. We avoid experiments or subjects while
the access control module approves data sharing to prevent this situation. When
a control node is in a conflict of interest class or not in the agreement class, it
will not receive data from that class’s members.

9.6 Security Policy

In this section, we present some access control policies to ensure inter-experiment
communication and testbed security and privacy. There are mainly two, native
owner and foreign owner, communication scenarios.

Native Owner: In this case, we describe data sharing among various experi-
ments when they are all from the same control node. Every node does not need
to access data from every node. Experiment nodes must ensure data confidential-
ity. There are two principles when sharing data among experiments or subjects.
Both principles are noted in the following.

Protecting CPS Testbeds from Experiments Gone Awry 155

Principle 1: An experiment or a subject can not read data from other experi-
ments or subjects if it violates the confidentiality of the data.

Principle 2: An experiment or a subject can read data from other experiments
or subjects if they do not violate Principle 1.

Foreign Owner: When there is a data-sharing request where the requester
and data holder are from different control nodes, in this case, data sharing can
be done if there is no conflict of interest among the experiments. If there is a
conflict of interest, the authorization module must not approve data sharing.
The conflict of interest issue is raised when the requester and the data holder
are from the same conflict of interest class. Data sharing is also possible if there
is an agreement between the requester and the data holder. Any control node
can access the open class data. A control node puts in a request on behalf of
its experiments and subjects. The authorization module depends on the object
class and requester control node identity to make the decision. In the following,
there are three principles for each type of object.

Principle 3: A control node can read an object if they are not in the same
conflict of interest class.

Principle 4: A control node can read an object if they are in the same agreement
class.

Principle 5: A control node can read any object if objects are in the open class.

10 Related Works

The Linux Policy Machine is proposed by [3] as the centralized reference monitor
to provide secure inter-component communication in an isolated environment. In
addition, they introduce tuple space to facilitate communication mechanisms for
the isolated components. They may require regulated and secure access to sys-
tem resources and the ability to collaborate and coordinate with one another.
[9] propose an architecture, ISAAC, for performing security experiments on a
testbed for smart grid systems. It’s a cross-domain, re-configurable, and dis-
tributed framework that simulates data from power generation in operations. It
allows researchers to develop, test, evaluate, and validate holistic cyber-physical
security techniques for cyber-physical systems and the Smart Grid. [1] utilize
simulation data from the Internet Scale Event and Attack Generation Environ-
ment (ISEAGE) to characterize the system architecture of a security testbed for
PowerCyber developed at Iowa State University. [12] present EPIC framework
that can accurately assess the effects of cyber-attacks on the cyber and physical
dimensions of networked critical infrastructures (NCIs), such as power plants.

11 Conclusion and Future Directions

This paper identifies some requirements for cyber security-oriented testbeds to
ensure the security of the testbed while carrying out various security experi-
ments. Our designed communication mechanism using tuple space in context

156 Md. R. H. Talukder et al.

with isolated experiments provides desired protection against threats. We also
recognize the significance of data sharing among organizations while avoiding
conflicts of interest and protecting proprietary information. Our designed autho-
rization module and access control policy prevent unauthorized access to data
and communication.

In future, we will consider the TSM not trusted. Cryptographic algorithms
or zero-trust-based solutions may come into use in that scenario. We will also
detect availability threats based on testbed resource consumption and run time.

Acknowledgements. This work was supported in part through funding from the US
Department of Energy under CID #DE-NE0008986, the US National Science Founda-
tion under grant #1822118, the industry partners AMI, NIST, Cyber Risk Research,
Statnett, New Push and ARL of the NSF IUCRC Center for Cybersecurity Analytics
and Automation, and the Colorado State University. Any opinions, finding, and con-
clusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the DOE, the NSF, the industry partners, the
University, or any other federal agencies.

References

1. Ashok, A., Hahn, A., Govindarasu, M.: A cyber-physical security testbed for smart
grid: system architecture and studies. In: Proceedings of the Seventh Annual Work-
shop on Cyber Security and Information Intelligence Research, pp. 1–1 (2011)

2. Banerjee, A., Venkatasubramanian, K.K., Mukherjee, T., Gupta, S.K.S.: Ensuring
safety, security, and sustainability of mission-critical cyber-physical systems. Proc.
IEEE 100(1), 283–299 (2011)

3. Belyaev, K., Ray, I.: Component-oriented access control for deployment of appli-
cation services in containerized environments. In: Foresti, S., Persiano, G. (eds.)
CANS 2016. LNCS, vol. 10052, pp. 383–399. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-48965-0 23

4. Burtsev, A., Radhakrishnan, P., Hibler, M., Lepreau, J.: Transparent checkpoints
of closed distributed systems in emulab. In: Proceedings of the 4th ACM European
Conference on Computer Systems, pp. 173–186 (2009)

5. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458
(1989)

6. Holm, H., Karresand, M., Vidström, A., Westring, E.: A survey of industrial control
system testbeds. In: Buchegger, S., Dam, M. (eds.) Nordic Conference on Secure
IT Systems, LNSC, vol. 9417, pp. 11–26. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-26502-5 2

7. Kim, S., Heo, G., Zio, E., Shin, J., Song, J.G.: Cyber attack taxonomy for digital
environment in nuclear power plants. Nuclear Eng. Technol. 52(5), 995–1001 (2020)

8. Line, M.B., Tøndel, I.A., Jaatun, M.G.: Cyber security challenges in smart grids.
In: 2011 2nd IEEE Pes International Conference and Exhibition on Innovative
Smart Grid Technologies, pp. 1–8. IEEE (2011)

9. Oyewumi, I.A., et al.: ISAAC: the idaho cps smart grid cybersecurity testbed. In:
2019 IEEE Texas Power and Energy Conference (TPEC), pp. 1–6. IEEE (2019)

10. Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In:
2011 International Conference on Wireless Communications and Signal Processing
(WCSP), pp. 1–6. IEEE (2011)

https://doi.org/10.1007/978-3-319-48965-0_23
https://doi.org/10.1007/978-3-319-48965-0_23
https://doi.org/10.1007/978-3-319-26502-5_2
https://doi.org/10.1007/978-3-319-26502-5_2

Protecting CPS Testbeds from Experiments Gone Awry 157

11. Siaterlis, C., Garcia, A.P., Genge, B.: On the use of emulab testbeds for scientifi-
cally rigorous experiments. IEEE Commun. Surv. Tutorials 15(2), 929–942 (2012)

12. Siaterlis, C., Genge, B., Hohenadel, M.: Epic: a testbed for scientifically rigor-
ous cyber-physical security experimentation. IEEE Trans. Emerging Top. Comput.
1(2), 319–330 (2013)

13. Smadi, A.A., Ajao, B.T., Johnson, B.K., Lei, H., Chakhchoukh, Y., Al-Haija,
Q.A.: A comprehensive survey on cyber-physical smart grid testbed architectures:
requirements and challenges. Electronics 10(9), 1043 (2021)

14. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber-physical system security for the
electric power grid. Proc. IEEE 100(1), 210–224 (2011)

	Protecting Cyber-Physical System Testbeds from Red-Teaming/Blue-Teaming Experiments Gone Awry
	1 Introduction
	2 Threat Model Relevant for the CPS Testbed
	2.1 Outsider Threats
	2.2 Insider Threats

	3 Overview of Our CPS Testbed Structure
	4 Cybersecurity Centric Experiment Support in Testbed
	5 Experiment Communication Model
	6 Overview of Experiment Execution on Testbed
	7 Inter-Experiment Secure Communications
	8 Testbed Tuple Space Design for Isolated Experiments
	8.1 Tuple Space Manager-TSM
	8.2 Tuple Space Operation
	8.3 Tuple Space Transaction

	9 Authorization Module (AM)
	9.1 Experiment Resources and Operations
	9.2 Resources and Privileges Allocation
	9.3 Relationship Between Control Node, Experiments, and Subjects
	9.4 Object Classification
	9.5 Control Node Identification
	9.6 Security Policy

	10 Related Works
	11 Conclusion and Future Directions
	References

