
Security Hardening of Industrial Control Systems through
Attribute Based Access Control

Shwetha Gowdanakatte
Shwetha.Gowdanakatte@colostate.edu
Department of Systems Engineering,

Colorado State University
Fort Collins, Colorado, USA

Mahmoud Abdelgawad
m.abdelgawad@colostate.edu

Department of Computer Science,
Colorado State University
Fort Collins, Colorado, USA

Indrakshi Ray
indrakshi.ray@colostate.edu

Department of Computer Science,
Colorado State University
Fort Collins, Colorado, USA

ABSTRACT
Industrial Control Systems (ICS) form a part of nations’ critical in-
frastructure. ICS comprises Programmable Logic Controllers (PLC)
and other components. In an innovative and connected world, the
vulnerabilities in ICS components can be exploited. Authentication
and access control stand as the first level of defense for protecting
ICS from cyberattacks. We demonstrate in our lab that PLC is prone
to Denial of Service (DoS) attacks. Subsequently, an attribute-based
access control mechanism is implemented to harden the security of
PLC. The demonstration of the security hardened system showcases
that PLC is no longer susceptible. Furthermore, the Coloured Petri
Nets (CPN) is used to analyze the behavior of security hardened
systems and provide formal assurance.
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1 INTRODUCTION
Industrial Control Systems (ICS) maintain critical infrastructure
such as power plants, chemical plants, water treatment plants, rail-
ways, and transportation systems. Due to technological advance-
ments, ICS connect to other Information Technology (IT) systems
for remote monitoring, control, and data collection. Modern ICS
support communication protocols over Ethernet and interact with
remote web servers through the Internet. Such communications
may cause cybersecurity attacks on ICS, such as the German steel
mill attack [18], the Ukrainian power grid attack [1], and Stuxnet
attack on the Iranian nuclear centrifuge [7].

Many of these problems are traced to flaws in the authentication
and access control mechanisms. Vendors often forget to change
default passwords, which can be compromised easily. There are
also security design issues with authentication protocols in major
ICS vendors such as Allen-Bradley, Siemens, Schneider Electric,
and Automation Direct, which can lead to authentication bypass,
password sniffing, password cracking, and password reset attacks
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[4]. Authentication and access control breach is often the first step
in compromising the integrity or availability of the system, leading
to catastrophic disasters.

ICS components have a long life. Consequently, it is impossible to
change all the components in existing PLCs, or modify them. In this
paper, we propose the use of a stronger access control mechanism
to counter the effect of authentication vulnerabilities. This does
not require changing the PLCs. We begin by demonstrating how
authentication breach can cause a Denial of Service (DoS) attack in
an existing PLC using our experimental setup. We then implement
an attribute-based access control mechanism that verifies multiple
attributes of the user to prevent unauthorized users from gaining
access and launching the DoS attack. We verify this empirically. For
more complex attacks, it may be impossible to verify systems using
an experimental setup. Towards this end, we show how formal
methods can be used for providing assurance about a system’s
behavior.

The access control mechanism that we use is NIST Next Gen-
eration Access Control (NGAC) [14]. NGAC is an attribute-based
access control model suitable for situational monitoring application.
ICS are event-based system and the policies may have to be changed
on-the-fly, hence NIST NGAC is most suitable. This is because NIST
NGAC support obligation policies through which access control
configuration can be modified. We use the Coloured Petri Nets
(CPN) [15] for formal analysis. CPN have an extensive tool support
and through a modular approach they allow for analyzing complex
systems. The CPN tool is used to verify and analyze the ABAC
gateway functionality.

We proceed with this paper as follows. Section 2 describes PLC
and their security vulnerabilities. It also illustrates the NIST NGAC
used for PLC. Section 3 expresses the threat model and demon-
strates a DoS attack on PLC. Section 4 explains how we design
and implement an ABAC gateway to harden the security for PLC.
Section 5 executes formal verification to exercise the PLC with and
without the ABAC gateway. Section 6 briefs the related work, and
section 7 concludes the paper and points to future work.

2 BACKGROUND
2.1 PLC and their Security Vulnerabilities
The generic architecture of an ICS is shown in Figure 1. ICS com-
prises Programmable Logic Controllers (PLC), Human Machine
Interfaces (HMI), field devices (actuators and sensors), and optional
Remote Monitoring and Control (RMC).

A PLC is an industrialized computer dedicated to monitoring
and controlling a process. It generally consists of digital and analog
modules, communication, software, and firmware module. An HMI
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Figure 1: Generic Architecture of ICS

is a graphical user interface used for configuration settings, commu-
nicating parameters with the PLC, process monitoring, and event
logging. The PLC receives configuration settings and commands
for the controlled process from the HMI or the RMC. It receives
feedback from sensors and controls the actuators by manipulating
the control variables. It communicates the data and status of the
controlled process to the HMI or the RMC. The typical life cycle
of an ICS consists of design, build, commissioning, operation, and
decommissioning. In addition to the hardware components, ICS
vendors typically provide an engineering framework, which has en-
gineering workstations that run application software for designing
and developing control software, updating firmware and control
software, and troubleshooting [12].

Examples of PLC include Siemens S7-1500 and Rockwell Com-
pact Logix. The Siemens S7-1500 PLC uses a client-server model
protocol, specifically, S7-Protocol version P3 designed over TCP/IP.
Siemens provides a Totally Integration Automation (TIA) system as
an engineering framework to work remotely with ICS devices. The
TIA uses a handshake mechanism to establish a communication
session with the PLC. This handshake mechanism utilizes the PLC
firmware version to create a session key that is used in communica-
tion exchanges between TIA and PLC. Hence, all S7-1500 PLCs with
the same firmware version can impersonate one another. This leads
to various vulnerabilities in the P3 protocol, such as authentica-
tion bypass vulnerability (CVE-2019-10943) [20] and high-severity
memory protection bypass vulnerability (CVE-2020-15782) [22].

Rockwell provides the so-called Studio 5000 as the engineering
framework. All Rockwell PLCs use Common Industrial Protocol
(CIP) for communications encapsulated in TCP/IP. Studio 5000
uses a handshake mechanism to establish a communication session
with the PLC. Studio 5000 uses a hard coded key to establish a
communication session with the PLC. Exchanging a hard coded
key between the Studio 5000 and PLC leads to vulnerabilities, such
as authentication bypass vulnerability (CVE-2021-22681) [23] and
Denial-Of-Service vulnerability (CVE-2019-10952) [21].

2.2 NIST NGAC for PLC
NGAC is a generic Attribute Based Access Control (ABAC) [14]
architecture suitable for distributed systems and situational moni-
toring applications. The NGAC model consists of basic elements
and relations. The basic elements include users, resources, opera-
tions, user attributes, resource attributes, and policy classes. NGAC
expresses policy through assignment, association, prohibition, and
obligation relations.

The relations connect basic elements in a hierarchy configuration.
The privileges are derived from these relations for access control
decisions. For the PLC, the policy in the NGAC form is given below.

• Users are the entities that request access to the resources.
• Resources are PLC components that need protection.
• Environments define the external conditions to users and
resources needed for the access, such as location (IP address)
and access time.

• Operations are actions a user can perform on the PLC.

Figure 2 illustrates the NGACmodel for PLC as a graph [12]. The
nodes shown by the user icon correspond to users. Solid boxes cor-
respond to attributes, and ovals correspond to resources. The solid
arrow edges represent assignment and the dotted edges denote asso-
ciation relation. The label on the edge denotes the operation name
that can be performed by users having the attribute implied by one
node of the association edge on resources having the attribute im-
plied by the other node of the association edge. The environmental
attributes and the obligation policies are not shown in Figure 2.

Figure 2: NGAC Model for PLC

The various attributes and operations are listed as follows:

PLC Attributes
(1) Module = {Communication, Software, Memory, Firmware,
Input/output} represents a module of the PLC.

(2) Status = {Stopped, Running, Emergency Stop Active } rep-
resents current operational status of the PLC.

(3) Port = is of type string that represents the communication
port of the PLC.

User Attributes
(1) AccessLevel = {Operator, Engineer, Administrator} repre-
sents access level of a requesting user.

(2) DeviceID is of type string. We use hard disk serial number
of the authorized engineering workstation as DeviceID be-
cause it is relatively difficult to change the hard disk serial
number of an attacker’s device to match the authorized
DeviceID.

Environmental Attributes
(1) Time is of type string that represents the time of access
requested by the user.

(2) Loc is of type string that represents the location from
where the user is trying to access the PLC.

Operations = { CommSetup, Download, Update, ReadMem,
WriteMem, ChangeMode, ResetMem, CommTerm } represent
operations performed on the PLC.
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A policy in the NGAC module is a tuple defined as:
⟨{𝑢𝑠𝑒𝑟𝐴𝑡𝑡𝑟 }, {𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐴𝑡𝑡𝑟 }, {𝑒𝑛𝑣𝐴𝑡𝑡𝑟 }, {𝑜𝑝}⟩ where userAttr, re-
sourceAttr, and envAttr denote the conditions on User Attributes,
Resource Attributes, and Environment Attributes, respectively, and
op signifies operations. This policy states that op is allowed only
when the userAttr, resourceAttr, and envAttr are satisfied. If any of
the conditions are false, the access is denied.

For instance, a Communication Setup Policy (CommSetup) is
permitted provided the user has access level Operator, Engineer, and
Administrator with device “4c174602" and the time of access is in
the interval 7:00-16:00 EST. This policy is expressed as:

⟨{𝑈𝑠𝑒𝑟 .𝐴𝑐𝑐𝑒𝑠𝑠𝐿𝑒𝑣𝑒𝑙 ∈ {𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟, 𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑜𝑟 }∧
𝑈𝑠𝑒𝑟 .𝐷𝑒𝑣𝑖𝑐𝑒 = “4𝑐174602”}, {𝑇𝑟𝑢𝑒},
{𝐸𝑛𝑣.𝑇𝑖𝑚𝑒 = 700 − 16 : 00𝐸𝑆𝑇 ∧ 𝐸𝑛𝑣.𝐿𝑜𝑐 = “𝑂𝑟𝑔.𝑙𝑜𝑐𝑎𝑙”},
{𝐶𝑜𝑚𝑚𝑆𝑒𝑡𝑢𝑝}⟩

The first component in the tuple gives conditions on the user at-
tributes. There are no explicit conditions on the resource attribute,
so the second is “true". The third component signifies condition over
environmental attributes: location and time. The last component
denotes the allowable operation.

3 ATTACK DEMONSTRATION
3.1 Threat Model
We adopted the threat model mentioned by Biham et al. [6]. The
threat model assumptions are given below.

(1) The attacker has the knowledge to attack the targeted PLC.
(2) The attacker is an outsider and has no authorized access to

the PLC or the engineering workstation.

3.1.1 Phase-1: Man-in-the-Middle attack – Interception of authenti-
cated communication between the PLC and engineering workstation.
The attacker performs the following operations.

(1) Obtains the PLC IP address through internal resources or
external websites like Shodan [9]

(2) Intercepts the communication between the targeted PLC and
the authenticated engineering workstation.

(3) Extracts the information on data required for establishing
the communication with the PLC. This data depends on the
specification of the PLCs. We need the firmware version for
the Siemens PLCs and the sender’s context for the Rockwell
PLCs to generate the communication request packet.

(4) The attacker also extracts the function code and the related
data of the operation.

3.1.2 Phase-2: Launching a DoS attack. The attacker establishes
the communication with the targeted PLC to cause an availability
attack as follows:

(1) Creates a communication request packet using the informa-
tion obtained in Phase-1.

(2) Sends the communication request TCP packet to the targeted
PLC’s IP address and the TCP port.

(3) The PLC establishes the communication with the attacker’s
engineering workstation.

(4) The attacker then sends a crafted TCP packet with the mod-
ified function code and data to the TCP port of the PLC to
cause a DoS attack.

3.2 Attack Demonstration
To demonstrate the DoS attack, we connected an engineering work-
station directly to the Rockwell Compact Logix PLC over the Inter-
net.

Figure 3: Wireshark Packet Intercept

3.2.1 Phase 1: Man-in-the-Middle attack: Interception of authenti-
cated communication between the PLC and engineering workstation.
We examined the communication between the authenticated engi-
neering workstation and the PLC by capturing the network packets
with Wireshark (a network packet analyzer [24]). Figure 3 shows
an example request packet from the engineering workstation to the
PLC intercepted by Wireshark. We extracted the ‘Sender Context,’
and the function code of the operation is performed from the Wire-
shark packet. The red boxes indicate the requesting the LED status
code (6f).

Figure 4: TCP Packets crafted with an invalid function code

3.2.2 Phase 2: Launching of DoS Attack. We launched a DoS attack
by performing the following operations.

(1) Using the ‘Sender Context’ information and our prior knowl-
edge of the working of Rockwell’s communication protocol,
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we created the communication request packet and estab-
lished the communication with the PLC.

(2) After establishing the communication between the PLC and
the engineering workstation, we sent the crafted TCP pack-
ets with an invalid function code, as shown in Figure 4. The
red box indicates the change of the last byte from 05 to 90.

(3) Invalid function code caused a major recoverable fault on
the PLC, which, in turn, changed the PLC status to “STOP
mode".

(4) The PLC stopped the current process and disconnected from
the network. Thus, sending a crafted TCP packet caused a
DoS attack on the PLC.

4 SECURITY HARDENING
We designed and implemented an independent gateway to be posi-
tioned between the user’s engineering workstation and the PLC.
This gateway comprises an authentication module, a communica-
tion handler, a protocol analyzer, and an access control module. We
named it the Attributed Based Access Control (ABAC) gateway.

Figure 5 shows the ABAC gateway architecture within dotted
lines, where the ABAC components are colored pink. We use a
Rockwell Compact Logix PLC for the implementation and testing
of the ABAC gateway.

Figure 5: ABAC Gateway Architecture

The authentication and access control modules are the central
parts of the ABAC gateway that prevent attackers from accessing
the PLC. All authorized users with their user id (UId), the password
(Pwd), the access level (AccessLevel), and the engineering worksta-
tions with their DeviceId must be pre-registered with the ABAC
gateway in order to communicate with the PLC. The password is
hashed with an MD5 cryptographic function and encrypted using
Advanced Encryption Standard (AES). We use a randomly gener-
ated key called Key to encrypt the password with AES. The UId, the
Pwd, and the DeviceId are stored in a database called LoginDB.

4.1 Authentication Module
The authentication module consists of a TCP server socket listening
to incoming user requests. It is the primary function of the imple-
mentation. It is primarily responsible for the authentication process.
It also handles the communication between the communication
handler and the user. The user sends a PLC request packet.

The authentication module then requests users to provide their
UId and the Pwd through the authentication process described
below.

(1) The user sends the UId to the authentication module.
(2) The authentication module verifies the UId in the LoginDB

to ensure that user is pre-registered.
(3) If the UId is found in the LoginDB, the authentication module

sends the Key to the user to encrypt the password. If not,
the authentication disconnects from the user’s engineering
workstation.

(4) The user responds with the encrypted Pwd.
(5) The authentication module decrypts the Pwd and validates.
(6) If the authentication is successful, the authentication module

extracts the DeviceID forwards it along with the PLCRequest-
Packet, and UId to the communication handler.

(7) If the user fails to authenticate, the authentication module
disconnects from the user’s engineering workstation.

4.2 Protocol Analyzer
We implemented a Python parsing function to parse the PLC re-
quest packets. The parsing process is specific to the communication
protocol used by the target PLC. We have implemented the protocol
analyzer specific to Rockwell’s Common Industrial Protocol (CIP)
communication protocol.

The CIP is an object-oriented protocol. Each CIP object is a partic-
ular component that contains attributes (data), services (commands),
connections, and behaviors (relationships between attribute values
and services) [13].

An encapsulated CIP packet consists of the following: (i) Com-
mand (2 Bytes) - the encapsulated command code, (ii) Length (2
Bytes) - the length of the encapsulated data, (iii) Session Handle (4
Bytes) - the session identifier, and (iv) Status (4 Bytes) indicates
whether the receiver successfully executed the request.

We used CIP andWireshark captures to implement a CIP protocol
analyzer that extracts the requested operation and other details
needed for access control verification.

4.3 Communication Handler
We implemented the communication handler as a Python script. It
functions as follows.

(1) Invokes the protocol analyzer to extract the Operation from
the PLC packet.

(2) Extracts the IP address of the incoming request (Source.IPaddress),
the PLC.Port, and the access time (Env.AccessTime) from the
PLCRequestPacket.

(3) Forwards theOperation, theUId, theDeviceID, the Source.IPaddress,
the PLC.Port, and the Env.AccessTime to the access control
module to compute the decision,

(4) Receives the decision from the access control module. If the
decision is to grant (grant), then it forwards the PLC request
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packet to the PLC through the Resource Access Point (RAP).
It also receives the PLC’s response through the RAP and
forwards it to the authentication module to send to the user.

(5) If the decision is to deny (deny), it forwards the decision
to the authentication module. The authentication module
disconnects from the user’s engineering workstation.

4.4 Access Control Module
We used a Python tool kit (i.e., Vakt library) to implement the access
control module. This library supports NGAC-based ABAC.[16]. The
Vakt library incorporates:

• Vakt Storage (Policy Information Point (PIP)): It stores the
policies the user application adds. PIP provides 3 types of
storage to store the policies; (i) Memory storage, (ii) SQL
storage, and (iii) Mongo DB storage. We used SQL storage
to create a policy database.

• Vakt Guard (Policy Decision Point (PDP)): PDP extracts pol-
icy information from PIP. Additionally, it communicates with
the PLC through Resource Access Point (RAP) to extract the
PLC.Status, and computes the decision.

• Policy Enforcement Point (PEP): The PEP is a user applica-
tion that communicates with PDP through the “Vakt Inquiry"
to check whether an access request is granted.

• Application Administration: A user application communi-
cates with the PIP to add, modify, or update policies.

Figure 6 illustrates the “Communication Setup" policy implemented
using Vakt library.

Figure 6: Example Policy Implementation

4.5 Resource Access Point
We implemented RAP as a Python script. It consists of a TCP client
socket communicating with the PLC over a private network. The
RAP

(1) Sends TCP/IP requests to the PLC to extract the information,
such as the PLC.Status that is required for the access control
verification.

(2) Receives the PLCRequestPacket from the communication han-
dler and forwards it to the PLC.

(3) Forwards the PLC’s response to the communication handler.
It is specific to the communication protocol used by the target PLC.
For our experiment, we implemented the RAP based on CIP that is
specific to the Rockwell PLCs [13].

4.6 Test Bed
We built a test bed that incorporates (i) an engineering workstation
implemented on a Raspberry Pi3 micro-controller, (ii) the ABAC
gateway implemented on a Raspberry Pi3, and (iii) Rockwell’s Com-
pact Logix as the target PLC. The engineering workstation commu-
nicates with the ABAC gateway through the Internet. The ABAC
gateway communicates with the PLC through a private one-to-one
Ethernet communication.

The Raspberry Pi3 is a single-board computer with Quad Core
1.2GHz Broadcom BCM2837 64bit CPU and 1GB RAM. It is suitable
for implementing small scale industrial automation and test bed
computers in the laboratory environment. The Raspberry Pi3 uses
Unix-like proprietary Operation System (OS) called Raspberry Pi
OS [25]. We used a small scale Rockwell’s Compact Logix PLC,
1769-L18ER-BB1B CompactLogix 5370 with the firmware version
30. This PLC uses a Real-Time Operating System (RTOS) based on
WinCE (Windows-based RTOS) [2].

4.7 Prevention of DoS Attack with ABAC
Gateway

We demonstrate how the ABAC gateway prevents the DoS attack
with two scenarios. We use the crafted TCP packets shown in
Figure 4 to launch a DoS attack on the target PLC through the
ABAC gateway. To send the crafted TCP packet, the user must first
send a communication request (CommSetup operation) to establish
the communication with the PLC.

4.7.1 Scenario 1 (Unauthenticated User). We sent the communica-
tion request with an unauthenticated user and the password in this
use case. The ABAC gateway received the packet and disconnected
from the engineering workstation.

4.7.2 Scenario 2 (Unauthorized Device). In this case, we assume an
attacker successfully extracts the user ID and the password through
brute force or other hacking techniques.

We sent the registration request packet with a valid user ID,
password, and device ID. The ABAC validated the access control
policies and disconnected the engineering workstation, as the ac-
cess control policy failed on an unregistered device ID. Figure 7
represents the output from the ABAC gateway preventing the DoS
attack from an unregistered device.

Figure 7: ABAC: Policy fail on invalid DeviceID

5 FORMAL VERIFICATION
We used CPN to formally verify the ABAC gateway. First, we mod-
eled CPN representing the PLC running without ABAC gateway
and demonstrated the DoS attack. We then created CPN demon-
strating PLC operating with ABAC gateway that prevented the DoS
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attack. In both use cases, we demonstrate an attacker impersonating
an engineering workstation and sending a crafted TCP packet to
execute a DoS attack on the PLC.

The executable model comprises several CPNs representing the
user, network, ABAC gateway, and PLC process. These nets are
connected to form a CPN hierarchy. We express the CPN hierarchy
using CPN block diagrams. These CPN block diagrams are not
executable but describe the flow control of messages exchanged
between the processes. The executable CPN is excluded due to lack
of space. We use CPNTools [26] to generate a state-space model
from the executable CPN. This is represented as a directed graph
with states and transitions.

The user process represents either a legal user or an attacker. For
the legal user, a TCP packet with a communication setup command
(COMM.SETUP) is sent to PLC. In the attacker’s case, a crafted TCP
packet with a communication stop (COMM.STOP) command is sent
to PLC to tackle a DoS attack and make PLC inoperable.

5.1 Use Case 1: PLC Running without ABAC
Gateway

Figure 8 illustrates the CPN block diagram demonstrating the PLC
running without the ABAC gateway. It includes three CPNs rep-
resenting the user, network, and PLC. The solid arrows indicate
messages sent from the user to PLC, while the dotted arrows express
messages returned from PLC to the user. The user sends a request
packet to initialize communication with PLC. The PLC receives the
request and replies back with a challenge question. The user sends
the challenge response, and the PLC confirms that the session is
OK to be established. The user then sends a command to PLC to be
executed and receives a response with PLC status.

Figure 8: PLC Running without ABAC Gateway

Table 1 shows the testcases that express the description of the
TCP packets, input values of TCP packets (i.e., tokens), expected
output, and actual output reporting the PLC status. These testcases
are designed as authorized users, unauthorized users, and attackers.
We assume that these users successfully responded to the challenge
question, and the attackers exploited the authentication and also

successfully responded to the challenge question. These users and
attackers have various IP addresses denoting different computers.
The first two testcases demonstrate a legal user, an administra-
tor (ADMIN) listed in the DAC access control list (ACL), having
discretion of executing the COMM.SETUP and COMM.STOP com-
mand on the PLC. The third testcase demonstrates a legal user, a
registered user (USER) listed in the DAC access control list (ACL)
but does not have the privilege to execute COMM.STOP command.
The fourth testcase demonstrates an attacker (ATTACKER-1) who
impersonates USER to execute COMM.STOP command. The fifth
testcase demonstrates an attacker (ATTACKER-2) who imperson-
ates ADMIN to execute COMM.STOP command. We expected that
ATTACKER-2 would be able to perform a DoS attack.

We applied these testcases to the executable CPN of Use Case
1 and the state-space generated. The testcases TC#1 and TC#2
passed successfully, showing that the ADMIN user can perform
COMM.SETUP and COMM.STOP operation on the PLC. The test-
cases TC#3 and TC#4 failed, and the PLC rejected the TCP packet.
The reason is that TC#3 representing USER that does not have the
privilege to execute COMM.STOP. Hence, DAC blocked the TCP
request packet. TC#4 represents ATTACKER-1, who impersonated
USER and obtained the same access discretion. Thus, DAC also
blocked its TCP request packet. TC#5 had successfully passed. The
ATTACKER-2 impersonated the ADMIN user, gained its discretion,
and stopped the PLC.

As shown in Table 2, the state space is fully connected, and all
states are reachable. It also shows that the state space is acyclic
since the number of states and transitions of the state space and
SCC graph are the same. A home state (i.e., home marking) is a
state that is reachable from all other states. A dead state (i.e., dead
marking) is a state that has no enabled transitions. Dead transition
never occurs; it is disabled in all reachable states.

We use CPNtools built-in functions, ListDeadMarking(fu())
and PredAllNodes(fu()), to investigate these states and tran-
sitions. Table 2 shows that the state 1653 is a home state. Ver-
ifying this state indicates the CPN state when the PLC process
receives the TCP packet. It means that the five testcases (tokens)
were processed and reached the PLC, but not all need to be con-
tinuous. The dead states 1378 and 1745 indicate the CPN termi-
nated when the TCP packet was rejected by the PLC process, for
the USER sent TCP packet to stop the PLC, and ATTACKER-1
impersonated USER and sent the same packet to stop the PLC.
The two dead transitions express that the network process did
not send the PLC status to the user process when a TCP packet
to stop PLC was rejected. An instance of the dead transition is
NetworkTCPPackets’Send_PLC_Status_to_User 2. The anal-
ysis of Use Case 1 summarizes that DAC is not robust, and the
attacker can typically impersonate a legal user and execute attacks
on PLC.

5.2 Use Case 2: PLC Operates with ABAC
Gateway

We added executable CPN nets representing the ABAC gateway
processes, including the authentication, communication handler,
and NGAC process. These CPN nets are positioned between the
network and the PLC process.
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TC# Description Input (Token) Expected
Output Actual Output Testcase

Status

1
ADMIN: A legal user listed in
DAC-ACL and has privilege to
setup PLC communication

{IP = {srcIPAddr = "10.255.10.7", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command =
Comm.Setup, SessionHandle = "established"}}}

PLC Status
Running

PLC Status
Running Passed

2
ADMIN: A legal user listed in
DAC-ACL privilege to stop PLC
communication

{IP = {srcIPAddr = "10.255.10.7", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command =
Comm.Stop, SessionHandle = "established"}}}

PLC Status
Stopped

PLC Status
Stopped Passed

3
USER: A legal user listed in DAC-
ACL but does not have privilege
to stop PLC communication

{IP = {srcIPAddr = "10.255.10.23", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command =
Comm.Stop, SessionHandle = "established"}}}

PLC Status
Stopped

TCP Packet
Rejected Failed

4
ATTACKER-1: An attacker imper-
sonates USER to stop PLC commu-
nication

{IP = {srcIPAddr = "13.255.255.1", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command =
Comm.Stop, SessionHandle = "established"}}}

PLC Status
Stopped

TCP Packet
Rejected Failed

5
ATTACKER-2: An attacker imper-
sonates ADMIN to setup PLC com-
munication

{IP = {srcIPAddr = "13.255.255.3", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", CIP = {Command =
Comm.Stop, SessionHandle = "established"}}}

PLC Status
Stopped

PLC Status
Stopped Passed

Table 1: Testcases demonstrate legal access and attacks for Use Case 1

State Space SCC Graph Status

#State

1820

#Transition

5733

#State

1820

#Transition

5733
Full

Home State

[1653]

Dead State

[1378,1745]

#Dead Transitions

2

Table 2: State-Space Analysis for Use Case 1

Figure 9 illustrates the CPN block diagram demonstrating the
PLC utilizing the ABAC gateway.

In addition to the terminal where a user receives a PLC response,
two places (unauthenticated and decision deny), colored red in
Figure 9, are also terminals. The unauthenticated place corresponds
to the case when a user fails to authenticate, and decision deny
place corresponds to where policy decision point (PDP) denies the
access request.

We use the same testcases presented in Table 1. In addition,
we added extra TCP attributes to the tokens, including userID,
encrypted password, deviceID, and access time. These attributes are
required for the authentication process and NGAC policy validation.

Table 3 shows 6 testcases that verify the authentication and au-
thorization processes of the ABAC gateway. We added a new test-
case (TC#4) expressing an attacker (ATTACKER-1) impersonating
a legal user (USER) but not having the same deviceID. USER’s de-
viceID is "SR567", whereas ATTACKER-1’s deviceID is "SR999".
In the testcase TC#5, the same attacker (ATTACKER-1) crafted an
TCP packet changing the deviceID to be as exact as USER, "SR567".
The testcase TC#6 presents the ATTACKER-2 impersonating the
ADMIN user with the decrypted password and crafted deviceID
as EncPWD = "PW123" and deviceID = "SR123". Again, we ex-
pected that ATTACKER-2 would be able to perform a DoS attack.

Repeating the analysis process, we applied these testcases to
the executable CPN of Use Case 2 and generated the state space.
The testcases TC#1 and TC#2 passed successfully, showing that
the ADMIN user was authenticated and authorized to perform
COMM.SETUP and COMM.STOP. The testcase TC#3 failed. The
reason is the USER attributes (UserID = "ADMIN-01", DeviceID =
"SR123"), resource attributes (PLC Module = COMM, Port = 44818),

environment attributes (IP = "10.255.10.23", AccessTime =
"13:25EST"), and Operation (STOP), does not fulfill the PLC-STOP
policy. Hence, the NGAC-PDP decision was denied access, and the
NGAC-PEP disconnected from the user.

The testcase TC#4 represents the scenario where ATTACKER-1
impersonated USER and obtained its credentials. This testcase failed
with an unauthenticated output because the ATTACKER-1 has a
different deviceID. USER has deviceID = "SR567" and ATTACKER-
1 in TC#4 has deviceID = "SR999". In testcase TC#5, although
ATTACKER-1 crafted a TCP packet changing the deviceID to be
as exact as USER, it failed with an unauthorized output because
the ATTACKER-1 has a different IP address, where the NGAC
policy fails. TC#6 also failed with the authorization process. The
ATTACKER-2 impersonated the ADMIN user, gained credentials
and deviceID, and passed the authentication process. However, the
NGAC-PDP denied access, and the NGAC-PEP disconnected from
the user because the ATTACKER-2 attributes do not fulfill the PLC-
STOP policy. The ATTACKER-2 has a different IP address than the
ADMIN uses.

Table 4 reports that the state space is acyclic and fully con-
nected. It shows that the state 683 is a home state, represent-
ing the CPN state where the authentication process receives the
user credentials and deviceID. The dead states 722 and 723 indi-
cate that for testcase TC#4, the access request packet ends at the
unauthenticated state, and the CPN is terminated. The dead states
3156,3157,3158,3159,3160,3161,3162,3163,3164,3165,

3166, and 3167 indicate that, for testcases TC#3, TC#5 and TC#6,
the access request packet passed the authentication process but ter-
minated at the NGAC-PDP where the access request is denied and
disconnected. The 27 dead transitions indicate the region where
the communication handler, NGAC policy points, and PLC were
not enabled. It is because the authentication process terminates the
CPN execution for the testcase TC#4, which represents unauthen-
ticated users. The analysis of Use Case 2 shows that although the
credentials had been decrypted, the attacker had been blocked from
accessing the PLC in two places, the authentication and NGAC
process. The Use Cases 1 and 2 analysis implies that incorporating
authentication and ABAC-NGAC is typically more robust than the
challenge question authentication and DAC for PLC protection.
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TC# Description Input (Token) Expected
Output Actual Output Testcase

Status

1 ADMIN: a legal user assigned
in NGAC Comm.Setup policy

{IP = {srcIPAddr = "10.255.10.7", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", UserID = "ADMIN-01",
EncPWD = "PWD123", DeviceID = "SR123", AccessTime = "13:10EST",
CIP = {Command = Comm.Setup, SessionHandle = "established"}}}

PLC Status
Running

PLC Status
Running Passed

2 ADMIN: a legal user assigned
in NGAC Comm.Stop policy

{IP = {srcIPAddr = "10.255.10.7", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", UserID = "ADMIN-01",
EncPWD = "PWD123", DeviceID = "SR123", AccessTime = "13:15EST",
CIP = {Command = Comm.Stop, SessionHandle = "established"}}}

PLC Status
Stopped

PLC Status
Stopped Passed

3
USER: a legal user has not as-
signed in NGAC Comm.Setup
policy

{IP = {srcIPAddr = "10.255.10.23", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", UserID = "USER-01",
EncPWD = "PWD567", DeviceID = "SR567", AccessTime = "13:25EST",
CIP = {Command = Comm.Stop, SessionHandle = "established"}}}

PLC Status
Stopped

Access Denied
& User

Disconnected
Failed

4
ATTACKER-1: an attacker im-
personates USER to stop PLC
communication

{IP = {srcIPAddr = "13.255.255.1", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", UserID = "USER-01",
EncPWD = "PWD567", DeviceID = "SR999", AccessTime = "13:35EST",
CIP = {Command = Comm.Stop, SessionHandle = "established"}}}

PLC Status
Stopped

Authentication
fails & User
Disconnected

Failed

5
ATTACKER-1: an attacker im-
personates USER to stop PLC
communication

{IP = {srcIPAddr = "13.255.255.1", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", UserID = "USER-01",
EncPWD = "PWD567", DeviceID = "SR567", AccessTime = "13:40EST",
CIP = {Command = Comm.Stop, SessionHandle = "established"}}}

PLC Status
Stopped

Access Denied
& User

Disconnected
Failed

6
ATTACKER-2: an attacker im-
personates ADMIN to setup
PLC communication

{IP = {srcIPAddr = "13.255.255.3", dstIPAddr = "129.10.1.3"},
TCP = {srcPort = "5357", dstPort = "44818", UserID = "ADMIN-01",
EncPWD = "PWD123", DeviceID = "SR123", AccessTime = "13:45EST",
CIP = {Command = Comm.Stop, SessionHandle = "established"}}}

PLC Status
Stopped

Access denied
& User

Disconnected
Failed

Table 3: Testcases demonstrate legal access and attacks for Use Case 2

Figure 9: PLC Operates with ABAC Gateway

5.3 Security Properties Verification
We consider certain states to verify security properties (authenti-
cation and authorization property). We verify states (i.e., desired
states) where a user is checked for registration and an access request
is validated. We use reachability analysis to verify that directed
paths start from the initial states to desired states.

CPNTools provides automatic generation tools (predecessors
and successors) that generate directed paths from an initial state to
a particular state and from this state to terminal states. CPNTools
also has a built-in reachability function, such as Reachable(𝑠𝑖,𝑠 𝑗),
used to verify these paths. We use these tools and functions for
security property verification.
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State Space SCC Graph Status

#State

4876

#Transition

18057

#State

4876

#Transition

18057
Full

Home State

[683]

Dead State

[722,723,3156,3157,3158,3159,

3160,3161,3162,3163,3164,3165,

3166,3167]

#Dead Transitions

27

Table 4: State-Space Analysis for Use Case 2

The authentication property is defined as verifying the identity
of a user, process, or device as a prerequisite to allowing access to
a system’s resources [19]. In the case of PLC operating without the
ABAC gateway, a user identity is represented as userID and chal-
lenge response. The combination of userID, encrypted password,
and deviceID is a user identification to access the PLC utilizing
the ABAC gateway. The authorization property verifies that a re-
quested action or service is granted for a specific resource [19]. The
requested action (operation to be performed on the PLC) is veri-
fied by DAC when the PLC is running without the ABAC gateway,
whereas it is verified by the NGAC when it operates with the ABAC
gateway.

We generate paths reaching the home state reported in Use
Case 1, Table 2 (1653), and from home state reaching the dead
states (1378 and 1745). The generated paths are described as a
sequence of state numbers. For instance, a path from the initial
state (state#1) to the desired state (state#1378) is generated as
[1,2,4,8,15,27,45,71,95,129,170,222,282,352,378,

460,551,652,760,876,996,1122,1248,1378]. For all cases,
displaying the description of these sequence state numbers and
verifying them shows that the user (either legal user or attacker)
has bypassed the authentication process. We investigated the to-
kens’ values of the terminal states of these paths. It turns out that
the tokens of the testcase TC#1, TC#2, and TC#5, which represent
the ADMIN user and ATTACKER-2, have reached the PLC executes
command and response. It indicates that not only has an attacker
bypassed the authentication process but also the authorization
process and the PLC execute command place is reachable.

The reachability of home state (683) and dead states (722 and
723) reported in Use Case 2, Table 4, generates paths that show a
user (either legal user or attacker) bypasses the authentication pro-
cess only if the deviceID is valid; otherwise the user fails to bypass
the authentication process. However, the paths generated for the
dead states (3156,3157,3158,3159,3160,3161,3162,3163,
3164,3165,3166 and 3167) reach the authorization process. In
particular, they reach the states described as [PEP,PDP, RAP,

PLCStatus,RAP,PDP,PIP,PDP,PEP,Disconnect]. We investi-
gated the tokens’ values of the terminal states of these paths. The
tokens of all testcases TC#3, TC#4, TC#5, and TC#6, which repre-
sent unauthorized legal users and attackers, were terminated in the
authorization process. Only tokens of the testcases TC#1 and TC#2
were terminated in the user process receiving the PLC response. It
indicates that the unauthorized user and attacker failed to reach
the PLC to execute the command and respond place.

This reachability verification summarizes that for the DAC access
control mechanism, an attacker impersonating a legal user can only

execute privileged operations to PLC that are authorized by the
legal user. However, there is no guarantee that the attacker cannot
impersonate an administrator user with the full privilege to perform
a DoS attack. It is because once the user, who might be an attacker,
bypasses the authentication process, the DAC does not verify the
characteristics of this user to grant access to the PLC; instead, it only
restricts the privilege based on the user’s permission. On the other
hand, the ABAC gateway verifies the access based on NGAC policy
comprising user attributes, environment, resource, and operation
attributes to grant and deny access to the PLC.

6 RELATEDWORK
Duka et al. [8] propose authenticated data exchanges through Mes-
sage Authentication Codes (MAC) between the ICS components,
such as PLC and HMI, by constructing the MAC in the software.
The control software within the PLC and HMI are constructed
with MAC to verify the data exchanged between the user and the
PLC for authentication and integrity. This does not address how
a rogue PLC can prevent the man-in-the-middle attack. The ap-
proach requires a design change in the PLC so that it can construct
and verify the MAC. Implementation becomes vendor-specific and
does not provide a centralized solution for complex ICS systems.
Additionally, this work does not address password-based attacks.

Gowdanakatte et al. [12] introduce an ABAC architecture to
protect ICS against vulnerabilities that arise from improper authen-
tication and access control. The authors use NIST NGAC to model
the controls of ICS users accessing the PLC components. They for-
malized the NGAC security model, including PLC Attributes, User
Attributes, Environmental Attributes, and Operations that users
are privileged to execute on the PLC.

The NGAC formalization covers three policies: Communication
Setup Policy, Memory Write Policy, and Firmware Update Policy.
The architecture is proposed as an independent gateway module
between an Enterprise network and PLC on an embedded controller.
The authors also provided security analysis with sequential dia-
grams. This work is promising for developing an isolated access
control module implanted into any ICS to strengthen the system
authorization and elevate its resiliency. However, the ABAC gate-
way implemented requires formal verification and experimental
evidence to evaluate its reliability.

RBACmechanism is becoming the de-facto access control mecha-
nism for ICS [11], [3], and [17]. RBAC provides more coarse-grained
access control compared to ABAC. RBAC is used to restrict ICS
user privileges based on their roles. Major PLC and HMI manufac-
turers are incorporating RBAC into their PLC and HMI security
features. Rockwell’s factory talk security software provides RBAC
for accessing PLC and HMI [3]. Honeywell ACS labs [17] proposes
a two-layered RBAC for ICS, which provides better security than a
single-layered RBAC.

Esiner et al. [10] design and implement a message authentica-
tion scheme using lightweight hash-chaining-based cryptography.
The authors focus on the performance and analyze the latency of
security checking as the message authentication scheme is fast and
flexible, targeting smart grid systems specifically. To ensure compat-
ibility, the solution was implemented as a bump-in-the-wire (BITW)
to apply to various deployment settings and communication models.
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The analysis demonstrates that the message authentication scheme
achieved an end-to-end communication latency below 2 millisec-
onds in an intra-substation-alike setting. Although our focus is
authorization, this work would be practical as an alternative to the
existing authentication mechanism of ICS to lower the security
checking latency.

The literature on PLC security considers using CPN for PLC
communication protocols and PLC program validation. Nonethe-
less, the research of the PLC security field shall consider formal
verification for access control used to protect PLC resources, which
is our consideration in this paper.

Bhurke et al. [5] review formal analysis methods used for security
analysis of the communication protocols used in the PLC domain.
They begin by describing various attacks of PLC, including DoS,
an-in-the-Middle (MITM) attacks, and Replay Attacks. Then, they
explore formal methods used for the analysis of PLC communica-
tion protocols such as Symbolic Model Verifier (SMV), Isabelle/HOL
(Higher Order Logic), Promela model checker (SPIN), Vienna De-
velopment Method (VDM), and Coloured Petri Nets (CPN).

The authors focus on CPN to analyze a client-server communica-
tion model utilized upon Highway Addressable Remote Transducer
over IP (HART-IP) protocol. They use CPN to model the HART
Protocol to assess the protocol’s overall behavior in the absence of
threats.

Schné et al. [27] use CPN for PLC program validation. The PLC
operations are generally simulated by CPN models, and the result
values are compared to the desired ones. The authors formally
define the PLC input and output values that express the color sets
of the CPN model. They illustrate the approach by using an oil
tank warning system as an example. The system initialization and
operation states are defined, and validation states are described.
The validation points to an undesired state (acknowledge instead
of a warning), highlighting a safety risk. The authors will address
program error localization in future work.

7 CONCLUSION
Authentication breaches in ICS can have devastating consequences.
ICS devices have a long life, and it may be impossible to patch
all the vulnerabilities. Towards this end, we showed how a NIST
NGAC attribute-based access control model can protect against
authentication vulnerabilities in PLC by verifying some additional
user and device attributes.

In our prototype, we observed no significant latency in the PLC
performance due to the ABAC controls. We also proved the security
hardening of the PLC formally using CPN.

We are currently investigating the use of NIST NGAC for the
security hardening of other devices in an ICS environment. We
expect implementation challenges of complex ICS systems with
security controls. In the future, we plan to analyze the latency,
performance, and throughput of the ICS due to the incorporation
of the ABAC module and see how this can be improved.
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