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ABSTRACT  
The information ecosystem today is noisy, and rife with messages 
that contain a mix of objective claims and subjective remarks or 
reactions. Any automated system that intends to capture the so-
cial, cultural, or political zeitgeist, must be able to analyze the 
claims as well as the remarks. Due to the deluge of such messages 
on social media, and their tremendous power to shape our per-
ceptions, there has never been a greater need to automate these 
analyses, which play a pivotal role in fact-checking, opinion mining, 
understanding opinion trends, and other such downstream tasks 
of social consequence. In this noisy ecosystem, not all claims are 
worth checking for veracity. Such a check-worthy claim, moreover, 
must be accurately distilled from subjective remarks surrounding 
it. Finally, and especially for understanding opinion trends, it is 
important to understand the stance of the remarks or reactions 
towards that specifc claim. To this end, we introduce a COVID-19 
Twitter dataset, and present a three-stage process to (i) determine 
whether a given Tweet is indeed check-worthy, and if so, (ii) which 
portion of the Tweet ought to be checked for veracity, and fnally, 
(iii) determine the author’s stance towards the claim in that Tweet, 
thus introducing the novel task of topic-agnostic stance detection. 

CCS  CONCEPTS  
• Information systems → Social networking sites; Informa-

tion systems applications; Collaborative and social comput-

ing systems and tools; 

KEYWORDS  
Stance Detection, Claim Extraction, COVID-19 
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Table 1: Two Tweets, each containing a check-worthy claim, 
and additional remarks by the authors expressing their 
stance vis-à-vis that claim: (A) opposition to a political party 
and its policies; (B) support for the action of a sportsperson. 

(A) {Rahm Emanuel literally said a Biden White House should 
tell people laid of from retail stores like JC Penny to 
learn to code.}claim {He actually said this! Dems dont 
care!}commentary 

(B) {Italian tennis star Camila Giorgi has been accused of 
using a fake Covid vaccine certifcate}claim . . . {Smart 
girl.}commentary 

ACM Reference Format: 
Noushin Salek Faramarzi, Fateme Hashemi Chaleshtori, Hossein Shirazi, 
Indrakshi Ray, and Ritwik Banerjee. 2023. Claim Extraction and Dynamic 
Stance Detection in COVID-19 Tweets. In Companion Proceedings of the 
ACM Web Conference 2023 (WWW ’23 Companion), April 30–May 04, 2023, 
Austin, TX, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10. 
1145/3543873.3587643 

1  INTRODUCTION  
Nearly a month before the World Health Organization declared 
COVID-19 a pandemic, the agency stated, “we’re not just fghting an 
epidemic; we’re fghting an infodemic”1. Two major consequences 
of this have since become apparent: endangering individual life due 
to misinformed decisions, and a general distrust of media. 

The primary approach to thwart misinformation has been fact-
checking, where the veracity of a claim is verifed against a trust-
worthy corpus [16, 36, 40]. Media articles, and social media posts 
in particular, however, often include factual claims as well as com-
mentary in the form of remarks, opinions, and emotive reactions. 
Accurate identifcation and extraction of factual claims from such 
posts should thus be an important component of fact-checking. Fur-
thermore, discriminating facts from commentary within a single 
post is critically important in understanding the author’s stance on 

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA a specifc issue mentioned in the post, and thus, understanding the 
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ACM ISBN 978-1-4503-9419-2/23/04. . . $15.00 
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Table 2: From the 80 most frequent content words found 
in a random sample of 10K tweets in a COVID-19 Twitter 
corpus [5], we manually select the most relevant terms. Our 
dataset comprises tweets that contain at least one such term. 

booster, china, corona, coronavirus, coronavirusoutbreak, coronaviruspan-
demic, coronavirusupdates, (covid-19), covid, covid-19, covid__19, covid_19, 
covid19, covid19https, covid19outbreak, covid19pandemic, covid2019, covid-
outbreak, covidpandemic, delta variant, johnson and johnson, lockdown, 
masks4all, moderna, omicron, omicronvariant, outbreak, pandemic, pfzer, 
quarantine, sanitizer, selfIsolation, socialdistancing, stayhome, staysafe, vac-
cine, vaxxed, virus, washyourhands, wfh, workfromhome 

zeitgeist surrounding any issue. This paper focuses on three key 
concerns in this arc, and develops the following pipeline: 
Claim existence: Has the author presented an objective (factual) 
claim in the post? If so, should it be considered check-worthy? 
In the very frst step, we identify posts that contain an objective 
(factual) claim. Further, along the lines of Barrón-Cedeno et al. [6], 
we determine if the claim is worth fact-checking, and discard from 
further analyses posts with no check-worthy claims. 
Claim extraction: identify which parts of the post correspond to 
factual claims, and which correspond to the author’s commentary 
(see Table 1). 
Dynamic stance detection: identify the author’s stance regarding 
the factual claim. In contrast to prior work on stance detection, we 
do not have a fxed set of topics. This detection is dynamic in the 
sense that the author’s stance is determined with respect to the 
objective claim presented in that very same post. The topic of this 
claim is neither fxed nor explicitly labeled, and it may have never 
been encountered before during training. 

We realize this three-part pipeline by developing and releasing 
a new manually annotated dataset (§2) of 1.3K Tweets related to 
the COVID-19 infodemic, where our annotations serve to answer 
the three key research questions of the pipeline (claim existence, 
claim extraction, and dynamic stance detection). In our experi-
ments for the frst two research questions, described in §3 and §4, 
we demonstrate signifcant performance gains over popular deep 
contextualized language models such as BERT [13]. In the third 
step of our pipeline, we present the novel task of dynamic stance 
detection (§5). We discuss notable related research (§6) before con-
cluding with an outline of possible future developments based on 
our work presented here. 

2  DATASET  
Along the lines of research studying the development of pandemic-
related discourse [2, 10], we collected tweets based on a list of 
keywords related to COVID-19 (Table 2) over a long period of 17 
months – from May 2020 to September 2021. We then removed 
duplicates and fltered out tweets with less than fve words. In 
the retained tweets, we replaced URLs and usernames with the 
“URL” and “USER” tags, respectively. We then added two more 
preprocessing steps, replacing (i) emojis with their corresponding 
text representations2, and (ii) slang and colloquial acronyms with 

2This was done using the demoji library, available at pypi.org/project/demoji. 

Table 3: The three questions answered by annotators, and 
their distribution over the various labels: Yes/No, or [A]gree, 
[D]isagree, [N]eutral. 

Question Total Label 

Does the tweet contain a factual 1,348 Yes (59.4%) No (40.6%) 
check-worthy claim? 
Does the claim span the entire tweet 801 Yes (11.9%) No (88.1%) 
(answer ‘no’ if the claim spans only 
part of the tweet)? 

[A]gree/[D]isagree/[N]eutral 
1-2 What is the stance of the author 801 [A] [D] [N] 
with respect to the claim made in (65.5%) (17.4%) (17.1%) 
the tweet? 

their formal counterparts3. To illustrate, this second step converts 
acronyms like “wml” to “wish me luck” and slangs like “wochit” to 
“watch it”. 

2.1  Data  Annotation  
We annotate this collection of tweets to precisely determine the 
objective (factual) claim component of each tweet. In the case such 
a claim exists, the annotators provide one of three labels – agree, 
disagree, or neutral – for the stance of the tweet with respect to 
that very same claim. 

For this work, we developed a web interface, which was designed 
so that if annotators are unclear about the label for a tweet, they 
are able to skip that instance. Further, the interface back-end was 
built to provide those tweets to an annotator which have already 
been labeled by another. Each tweet is annotated by two individuals 
working independently. A total of 12 annotators are used in our 
collection, each profcient in English4. Moreover, each annotator 
is equipped with at least an undergraduate college education. To 
resolve inter-annotator disagreements, a discussion followed by an 
external expert adjudicator is used. 

The annotation task is formulated by posing three questions, 
shown in Table 3, along with the distribution over their labels. The 
frst two questions require binary yes/no labels, while the third 
question requires one of three labels: agree, disagree, neutral. 

2.2  Datasets  utilized  
In this work, we not only use the annotated collection described 
above, but also an augmented version of it. Additionally, we utilize 
two datasets of tweets related to COVID-19, released by Alam 
et al. [2] and Glandt et al. [15]. Here, we describe them briefy and 
introduce the notations we use to refer to them. 

Our annotated dataset (DS1) consists of more than 1.3K an-
notated tweets labeled with the span of the claim in the tweet 
along with the author’s stance towards that claim, gleaned from the 
remaining portion with the commentary (for example, see Table 1). 

Our augmented dataset (DS1-Aug) is created by artifcially 
enhancing the size and diversity of the data of our annotated data by 
augmenting it with back-translation [34]. In this work, we translate 

3The Text Slang dictinoary, available at www.noslang.com/dictionary 
4We use the term profcient user to refect the highest level, C2, as described by the 
Common European Framework of Reference for Languages (CEFR) [12]. 
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Claim Extraction and Dynamic Stance Detection 

Table 4: Dataset statistics about the check-worthy (cw) and 
not check-worthy (ncw) classes. Beyond the datasets already 
described in §2, we use the following to fne-tune and test var-
ious models for Task 1: DS2-Eng (only the English-language 
tweets of DS2), DS1-DS2 (the union of DS1-Aug and DS2), 
DS1-Test (the test set of our annotated corpus), and DS2-Test 
(the English-language tweets from the test set of DS-2). 

Dataset 
# 

cw 
% # 

ncw 
% 

Total 
# 

DS1 
DS1-Aug 

605 
3612 

60.10 
60.10 

402 
2398 

40 
40 

1007 
6010 

DS2-Eng 
DS2 
DS1-DS2 

387 
6876 
10488 

12.70 
65.05 
63.25 

2661 
3695 
6093 

87.3 
35 

36.80 

3048 
10571 
16581 

DS1-Test 
DS2-Test 

196 
306 

57.50 
36.70 

145 
528 

42.50 
63.30 

341 
834 

an English tweet to a second language, translate that to a third 
language, and then translate it back to English. We obtain all these 
translations using the Google Translate API5. The intermediate 
languages are chosen uniformly at random from among the 100-plus 
languages available from this API. This back-translation method is 
applied fve times to each tweet, thereby generating an augmented 
corpus fve times the size of DS1. 

The COVID-19 infodemic (DS2) corpus, provided by Alam 
et al. [2], comprises more than 16K tweets (in Arabic, Bulgarian, 
Dutch, and English) related to the COVID-19 pandemic. In this 
dataset, each tweet is labeled to denote whether or not it contains a 
claim that may cause harm. Their work determines harm by asking 
seven questions to their annotators, the frst being (Q1) “Does the 
tweet contain a verifable factual claim?”. Since this question has a 
yes/no answer, we opt to employ this data to train our models for 
the claim existence task in our pipeline. We are able to hydrate6 

more than 14K such tweets, and use the Google Translate API to 
translate the non-English tweets to English. 
The COVID-19-Stance Dataset (DS3), provided by Glandt et al. 
[15], consists of more than 7K tweets. This collection is designed to 
detect the stance of the tweet’s author about one of the four topics: 
Stay at Home Orders, Keeping Schools Closed, Wearing a Face Mask, 
and Anthony S. Fauci, M.D.. Even though there are no fxed target 
topics in our work, we utilize this dataset for the dynamic stance 
detection task in our pipeline. 

3  TASK  1:  CLAIM  EXISTENCE  
The frst component in our pipeline is a module capable of deter-
mining whether a given tweet makes any objective (factual) claim. 
We consider these to be check-worthy (cw). As shown by Zuo et al. 
[42], nearly half of the tweets (43.4%) are not factual and, thus, are 
not check-worthy (ncw). Table 4 shows the distribution over cw 

5translate.google.com 
6Due to restrictions on sharing Twitter data, datasets can only share tweet IDs. Given 
a collection of tweet IDs, hydration refers to the process of obtaining their details, 
including the actual content [39]. 
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Table 5: Experimental results on Task 1: the [P]recision and 
F1 scores upon fne-tuning three pretrained language models 
(BERT, RoBERTa, XLNet) using 5 datasets, and testing on 
DS1-Test and DS2-Test. 

Dataset BERT RoBERTa XLNET 
Train Test P F1 P F1 P F1 

DS2-Eng 
DS2 

DS2-Test 
DS2-Test 

78.3 
79.6 

78.37 
79.52 

80.0 
81.6 

79.91 
81.43 

81.8 
82.0 

81.78 
81.84 

DS1 
DS1-Aug 
DS2-Eng 
DS2 
DS1-DS2 

DS1-Test 
DS1-Test 
DS1-Test 
DS1-Test 
DS1-Test 

74.16 
75.20 
67.28 
70.17 
74.63 

69.24 
73.53 
66.74 
70.20 
74.58 

76.43 
77.37 
66.05 
70.34 
75.68 

71.62 
74.39 
66.11 
70.18 
75.24 

72.88 
74.8 
69.77 
73.13 
76.75 

68.35 
72.77 
69.78 
73.08 
76.59 

and ncw tweets in the various datasets we use in our experiments 
on checking for the existence of claims. We describe these next. 

3.1  Experiments  
We conduct two sets of experiments. In the frst, we exclusively use 
the data provided by Alam et al. [2], and in the second, we include 
our own annotated corpus. 

3.1.1 Experiments on the COVID-19 Infomedic corpus DS2. We fne-
tune various pretrained language models on the training sets of 
DS2 and DS2-Eng, and test them on a fxed set of English Tweets 
published by Alam et al. [2]. This test set (DS2-Test) consists of 
834 tweets, which we were able to re-hydrate. Since we are able 
to re-hydrate more than 92% of the tweets of the original English-
language test set, our experiments using hyperparameters identical 
to Alam et al. [2] are comparable to their original fndings. These 
results are shown in Table 5. The results reported by Alam et al. 
[2] show that the best weighted �1 score for Q1, when training on 
DS2-Eng, is achieved using the RoBERTa [24] model (78.6%). For 
the same setup, we obtain an �1 score of 79.91%. When training on 
DS2 (i.e., including the translated non-English tweets), we observe 
an improvement to 81.43% for RoBERTa. Additionally, we report the 
performance of XLNet [41] here, which is comparable to RoBERTa 
(�1 score of 81.84%). A more detailed table of these reproduction 
experiments is presented in Appendix 8, Table 10. 

3.1.2 Experiments incorporating our annotated corpus DS1. Next, 
we add our annotated corpus to the COVID-19 infodemic collection. 
The main objective of this series of experiments is to identify models 
capable of achieving high precision as well as high recall scores 
on our dataset in Task 1. In other words, we identify models that 
discard the tweets that do not contain an objective (factual) claim, 
while retaining the tweets that do. Thus, we test these models only 
on DS1-Test and focus on the �1 score for the ncw class. 

The results of this second series of experiments are shown in 
the lower half of Table 5, from which we can glean that training on 
the augmented collection, DS1-Aug, ofers signifcant improvement 
across all models. A more detailed analysis shown in Table 6 dis-
closes that while the improvements in cw are modest, training on 
the augmented corpus provides a signifcant fllip to the �1 score 
for ncw: RoBERTa shows the lowest improvement (5.16%, from 
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Table 6: Class-wise performance measures of training BERT, RoBERTa, and XLNet on various datasets and testing on DS1-Test. 

Dataset 
Model 

Class Precision 

BERT 

Recall �1-Score Precision 

RoBERTa 

Recall �1-Score Precision 

XLNet 

Recall �1-Score 

ncw 81.58 42.76 56.11 84.81 46.21 59.82 79.22 42.07 54.95 
cw 68.68 92.86 78.96 70.23 93.88 80.35 68.18 91.84 78.26 

DS1 Macro Avg 
Micro Avg 

75.10 
74.16 

67.81 67.53 
71.55 69.24 

77.52 
76.43 

70.04 70.09 
73.61 71.62 

73.70 
72.88 

66.95 
70.67 

66.61 
68.35 

ncw 78.43 55.17 64.78 83.70 53.10 64.98 78.57 53.10 63.37 
cw 72.80 88.78 80.00 72.69 92.35 81.35 72.02 89.29 79.73 

DS1-Aug Macro Avg 
Micro Avg 

75.60 
75.20 

71.97 72.39 
74.49 73.53 

78.19 
77.37 

72.73 73.16 
75.66 74.39 

75.3 
74.80 

71.19 
73.90 

71.55 
72.77 

ncw 59.51 66.90 62.99 61.03 57.24 59.07 64.58 64.14 64.36 
cw 73.03 66.33 69.52 69.76 72.96 71.32 73.60 73.98 73.79 

DS2-Eng Macro Avg 
Micro Avg 

66.30 
67.28 

66.61 66.25 
66.57 66.74 

65.39 
66.05 

65.10 65.20 
66.28 66.11 

69.10 
69.77 

69.06 
69.79 

69.08 
69.78 

ncw 66.42 61.38 63.80 64.05 67.59 65.77 70.77 63.45 66.91 
cw 72.95 77.04 74.94 75.00 71.94 73.44 74.88 80.61 77.64 

DS2 Macro Avg 
Micro Avg 

69.70 
70.17 

69.21 69.37 
70.38 70.20 

69.53 
70.34 

69.76 69.60 
70.09 70.18 

72.83 
73.13 

72.03 
73.31 

72.28 
73.08 

ncw 72.52 65.52 68.84 75.83 62.76 68.68 75.78 66.90 71.06 
cw 76.19 81.63 78.82 75.57 85.20 80.10 77.46 84.18 80.68 

DS1-DS2 Macro Avg 
Micro Avg 

74.40 
74.63 

73.57 73.83 
74.78 74.58 

75.70 
75.68 

73.98 74.39 
75.66 75.24 

76.62 
76.75 

75.54 
76.83 

75.87 
76.59 

59.82% to 64.98%) while BERT [13] improves by 8.67% (from 56.11% 
to 64.78%). This improvement is perhaps not a surprise, since prior 
work on various natural language understanding tasks has shown 
improvements upon training with augmented data [23, 33]. 

We also observe that the performance of the models trained on 
DS2 and DS2-Eng correlates with the performances of the same 
models trained on DS1 and DS1-Aug, providing a hearty indication 
that the COVID-19 infodemic corpus is highly relevant to our task. 
Training only on DS2 or DS2-Eng shows little or no improvement 
over the same model trained on DS1-Aug, but we do see the best 
�1 scores being attained upon training on DS1-DS2 (the union of 
DS1-Aug and DS2). The highest improvement can be seen in XLNet, 
where the �1 score jumps by nearly 4% (from 72.77% to 76.59%). 
Thus, as expected, training on additional corpora designed for a 
similar task yields signifcant gains. 

In Table 7, we share the hyperparameters for the second series 
of experiments described above. 

4  TASK  2:  CLAIM  EXTRACTION  
We treat the extraction of objective (factual) claims in a tweet as 
a sequence labeling task. The tweet text represents the entire text 
sequence, and each token is labeled as either being part of the claim 
or not. We use the IOB2 schema [38] with the following tags: 

• B-Claim indicates that the token represents the beginning 
of a claim, 

• I-Claim indicates that the token is a part of a claim (this tag 
is only used when the preceding label is B-Claim), and 

• O indicates that the token is outside the scope of the claim. 
If t = {�1, ..., �� } is a sequence of tokens in a given tweet � , where 
�� represents the �th token in � , the task is to assign one of three 

labels � = {B-Claim, I-Claim, O} to each �� ∈ � . Figure 1 illustrates 
the IOB2 tagging schema on our annotated collection, with three 
categorically distinct examples. 

4.1  Experiments  
In our baseline model, we fne-tune pretrained BERT embeddings 
with an added linear layer and the softmax activation function to ob-
tain the class labels for the tokens. During this, the BERT parameters 
as well as the added layer weights are trained. Our implementation 
is done using PyTorch7 and the Transformers library8. 

The BERT architecture has a 0.4 dropout probability for all fully 
connected layers. The additional linear layer takes BERT’s output 
(i.e., a vector of size 768) as its input, and provides a 3-dimensional 
output. We use cross-entropy as the loss function here, and train 
for 5 epochs with a batch size of 32. We use a maximum sequence 
length of 128, and set the learning rate to � = 5 × 10−5. 

We compare the baseline results to Flair [1], which is an of-the-
shelf framework for training neural networks for natural language 
processing tasks. It has demonstrated impressive results for many 
sequence labeling problems such as the named entity recognition 
task introduced in the CoNLL-2003 [37]. The model is pretrained 
on a billion words of text, to learn the parameters of a multi-layer 
long short-term memory (LSTM) network. Given the pretrained 
network, the tokens are passed as an input sequence, and values 
from the deepest hidden layer at each index are returned. These 
values form the contextual embeddings. Beyond the contextual 
embeddings of Flair, we also use GloVe [30], a classical pretrained 

7pytorch.org 
8huggingface.co/transformers 
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Table 7: Hyperparameters used in Task 1 experiments incor-
porating our annotated corpus DS1: learning rate (�) and the 
number of epochs (�� ) 

Training 
dataset 

Hyperparameter BERT XLNet RoBERTa 

DS1 
� 
�� 

1 × 10−5 

10 
2 × 10−5 

10 
5 × 10−5 

5 

DS1-Aug 
� 
�� 

3 × 10−5 

3 
1 × 10−5 

3 
3 × 10−5 

2 

DS2-Eng 
� 
�� 

1 × 10−5 

10 
1 × 10−5 

10 
5 × 10−6 

5 

DS2 
� 
�� 

3 × 10−5 

2 
1 × 10−5 

3 
1 × 10−5 

3 

DS1-DS2 
� 
�� 

1 × 10−5 

2 
2 × 10−5 

3 
2 × 10−5 

2 

language model, and the stacked embeddings of GloVe + Flair, 
GloVe + BERT, and Flair + BERT. 

4.1.1 Influential users. Our work pertains to claims made in so-
cial media posts, and the users’ stance toward such claims. Given 
that infuential users with a large number of followers are able to 
disseminate claims as well as opinions to a wider audience [9], it 
is ftting for us to analyze the performance of our models on such 
users. This is all the more important because the cascading nature 
of information (or misinformation) propagation tends to center 
around such users [4]. 

In this leg of our work, from our entire corpus, we identify 
infuential Twitter accounts that are verifed. These include health 
organizations, political personalities, well-known news sources, 
and users with more than 10K followers. We then examine the 
performance of our claim extraction models on the entire test set, 
as well as a specifcally selected small test set of 100 tweets from 
these infuential accounts. 

4.1.2 Evaluation measures. Claim extraction being a sequence la-
beling task, it is worth noting that the standard evaluation tech-
niques are not immediately applicable. If the ground truth annota-
tion of a claim is not an exact token-to-token match of the model’s 
prediction, it is not obvious whether that should be treated as a 
complete mistake. To illustrate, consider the following mismatch 
between the ground truth label of a claim and a model’s prediction: 

{Coronavirus cases are on the rise nationwide 
and we have to everything we can to stop the 
spread.}ground truth Practice social distancing. Wash 
your hands. Wear a mask. It saves lives. 
{Coronavirus cases are on the rise nationwide and we 
have to everything we can to stop the spread. Practice 
social distancing.}predicted Wash your hands. Wear a 
mask. It saves lives. 

It is our view that such partial extractions should only be partially 
penalized. Otherwise, not only do the numeric scores appear more 
severe, but requiring a strict matching between the predicted se-
quence and the ground truth sequence may lead to overcorrection 

Figure 1: A tweet may entirely or partially consist of an objec-
tive claim, or it may not have any objective claim at all. These 
three types of tweets are shown as all-claim (AC), partial-
claim (PC), and no-claim (NC), along with the IOB2 tagging: 
B-Claim (dark green), I-Claim (light green), and O (yellow). 

over diferent but reasonable extractions. Indeed, this is the view 
taken by a large body of prior work on sequence labeling and 
information extraction tasks (see, for example, [20, 26]). 

We thus develop a relaxed evaluation, where the incorrect inclu-
sion of additional tokens or the incorrect exclusion of the claim’s 
tokens are somewhat tolerable. Such a relaxation toward more tol-
erant measures has seen extensive use in earlier sequence labeling 
tasks [7, 20, 43], since they ofer a more meaningful evaluation of 
such models. Since our models need to identify token sequences 
in tweets of varying lengths, we calculate the weighted average of 
scores based on the tweet lengths. Accordingly, our measure infuses 
both the impact of the tweet length and the partial penalization in 
the evaluation. For each tweet, we compute the weighted precision 
and �1, and divide by the total number of tokens in the corpus. We 
call this the dataset-wise evaluation of precision and �1: Í� Í� 

�=1 �� ∗ |�� | �=1 �1� ∗ |�� |
��� Í� 

�1(�� ) Í� 
= = , 

�=1 |�� | �=1 |�� |
We also compute these measures without considering the length of 
each tweet, and call it the tweet-wise evaluation of precision and �1 Í� Í� 

�=1 �� �=1 �1�
��� = =�1(�� )

� � 
where � and �� denote the total number of tweets in the test set 
and the tokens in the �th tweet, respectively, and �� denotes the 
precision calculated for the tokens in the �th tweet. 

4.2  A  discussion  of  the  experimental  results  
Our experimental results are shown in Table 8. We display them in 
two sections, with the second showing the performance of various 
models on the test set of tweets from infuential Twitter accounts. 

Overall, the stacked embeddings of Flair + BERT show signif-
cantly better performance in terms of both precision and �1 score, 
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Table 8: Claim extraction results on the test set of tweets 
from regular Twitter users, and on the test set of tweets from 
infuential Twitter users with verifed accounts. 

tweet-wise dataset-wise 

Embedding P F1 P F1 

Regular 

BERT (baseline) 0.55 0.55 0.62 0.65 
GloVe 0.56 0.55 0.63 0.66 
Flair 0.57 0.57 0.65 0.68 
Stacked embeddings 
Flair + BERT 0.72 0.67 0.74 0.70 

Highly Infuential 

BERT (baseline) 0.64 0.74 0.63 0.73 
GloVe 0.71 0.76 0.75 0.75 
Flair 0.80 0.80 0.79 0.76 
Stacked embeddings 
GloVe + Flair 0.82 0.81 0.80 0.76 
GloVe + BERT 0.83 0.82 0.81 0.80 
Flair + BERT 0.84 0.81 0.82 0.80 

whether or not we account for the length of individual tweets. Based 
on this success, we run evaluate two other stacked embeddings – 
GloVe + Flair, and GloVe + BERT – on the test set of infuential 
tweets. All three perform signifcantly better than the standalone 
language models, and Flair + BERT continues to have the best 
overall performance. 

It is worth noting, however, that the standalone models perform 
signifcantly better on the infuential tweets when compared to the 
regular tweets. A qualitative comparison shows that the infuen-
tial users tend to use a more formal writing style. This includes, 
among other diferences, proper punctuation, grammatically cor-
rect sentences, and correctly spelled words. Regular users often 
post without paying much attention to these aspects of language, 
as we can see in the following example: 

smh When are stupid media going to get that a pan-
demic didnt happen . . . 

Furthermore, we also notice that infuential tweets generally have 
a grammatically clear distinction between the claim and their ad-
ditional commentary. For instance, the claim and the commentary 
may be two separate sentences. Regular users, on the other hand, 
often intertwine the two (and often, with some ambiguity). The 
complete tweet in the above example illustrates this phenomenon: 

smh When are stupid media going to get that a pan-
demic didnt happen, {it was predicted to sweep across 
the world killing tens of millions and infecting between 
2 and 6 billion pple by now}claim, well it peaked at .1 
of pop. before acute phase ended in May, its now a 
cold.” 

5  TASK  3:  DYNAMIC  STANCE  DETECTION  
Among many defnitions of stance detection (for a detailed discus-
sion, we point the reader to Küçük and Can [21]), we adopt the one 
proposed by Mohammad et al. [27] in the SemEval task on detecting 

Figure 2: An author’s disagreement toward the primary ar-
gument presented in the same tweet. 

stance in tweets. They defne stance detection as a classifcation 
task, where the goal is to determine the position of the author of a 
given text towards a specifc target. The position is represented by 
one of the following category labels: “Favor”, “Against” or “Neither”. 
Many aspects of stance detection have since been explored. For 
instance, Ng and Carley [29] explored the whether stance classif-
cation models can be generalized across datasets. In all such prior 
work, however, the target topics were always fxed a prior. We, on 
the other hand, explore the possibility of detecting the stance with-
out any fxed set of targets, and indeed, without even the explicit 
notion of targets. Rather, the target is obtained “on the fy”, from 
each individual instance. In our work, this dynamic target is the 
objective (factual) claim extracted from that same tweet. 

5.1  Experiments  &  Results  
Dynamic stance detection is an important task. Its most direct appli-
cation is perhaps in understanding the social and cultural zeitgeist 
surrounding opinion-laden issues, and thus, in understanding the 
propagation of misinformation. In many cases, we fnd that users 
post incorrect statements or arguments, but counter it in an efort 
to illustrate the fallacy. Figure 2 shows such an example, where 
the additional commentary clearly shows that the author is not 
misinformed. Without discriminating between this additional re-
mark and the rest of the tweet, however, automated methods may 
mistakenly label such posts as misinformation. 

Even though stance detection is sometimes considered as a type 
of sentiment analysis (because the aim is to identify the stance 
toward the target), it is worth noting that dynamic stance detection 
is distinct from sentiment analysis, since a tweet may express op-
position to a claim using various fgurative tools such as sarcasm, 
humor, or irony. It is also common to fnd social media posts where 
the opinion expressed in the post is not literally directed at a target, 
but the opposition (or support) can be deduced implicitly. As we 
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Table 9: Results on dynamic stance detection, showing the 
(P)recision and �1 scores. Results denoted by ∗ are on the 
binary classifcation experiments. The best results on the DS1 
test set for the 3-class and binary classifcation experiments 
are shown in bold. 

Train 
Dataset 

Test P 
BERT 

F1 
RoBERTa 
P F1 

XLNET 
P F1 

DS3 
DS1 
DS3+DS1 

DS3-Test 
DS3-Test 
DS3-Test 

0.71 
0.26 
0.68 

0.71 
0.27 
0.68 

0.71 
0.27 
0.70 

0.71 
0.26 
0.70 

0.73 
0.24 
0.71 

0.72 
0.24 
0.71 

DS3 
DS1 
DS1 
DS3+DS1 
DS3+DS1 

DS1-Test 
DS1-Test 
DS1-Test* 
DS1-Test 
DS1-Test* 

0.39 
0.63 
0.66 
0.52 
0.61 

0.33 
0.31 
0.60 
0.41 
0.57 

0.40 
0.59 
0.62 
0.59 
0.56 

0.32 
0.40 
0.55 
0.42 
0.54 

0.45 
0.63 
0.65 
0.49 
0.56 

0.34 
0.46 
0.51 
0.36 
0.56 

can see from Figure 2, this often takes a dialectic and didactic form, 
and requires a deep understanding of natural language pragmatics. 
Without the development of such pragmatic analyses, however, 
dynamic stance detection remains distinct from sentiment analysis. 

In a manner similar to the frst two tasks, we opt for three difer-
ent state-of-the-art pretrained language models (BERT, RoBERTa, 
and XLNet). In particular, our approach is much like the frst task on 
identifying the existence of a claim, since both are essentially classi-
fcation tasks. Thus, here too, we use the same transformer models 
to examine the impact of domain-specifc datasets. The architecture 
incorporates a 0.4 dropout probability for all fully connected layers. 
We add a single linear layer, which converts the model’s output to 
a 3-dimensional output. We use cross-entropy as the loss function 
and train for 5 epochs with a batch size of 32. A maximum sequence 
length of 128 is used, and the learning rate is set to � = 5 × 10−5. 

We utilize not only our annotated corpus (DS1) but also the 
dataset (DS3) provided by Glandt et al. [15] for this task. The latter 
comprises tweets labeled with the stance expressed in them with 
regard to topics relevant to the pandemic. DS3 difers from DS1 in 
that it contains four predetermined target topics. Table 9 shows the 
performance of these three models on two diferent test sets: DS1-
Test, the test partition of our annotated collection, and DS3-Test, 
the test partition of the collection obtained from DS3 (with four 
fxed targets). 

Our results are not directly comparable to those obtained by 
Glandt et al. [15], since we combine all the targets together into a 
single group, in order to partially simulate dynamic stance detection. 
Thus, even though their work reports a variant of BERT achieving 
�1 > 0.8 for one of the four targets, our experiments fnd XLNet to 
be the best performer, with �1 = 0.72, when testing on DS3-Test. 

Next, we combine the two collections to see if the use of ad-
ditional datasets designed for traditional stance detection lead to 
improvements. However, we actually observe a decline in the results. 
This is probably due to the extreme target-imbalance created due 
to the inclusion of DS3 in the training of these models. In essence, 
training on a small number of fxed targets makes the models worse 
for detecting stance where the target appears dynamically, often 
never seen during training. 

Finally, we also conduct experiments on binary stance detec-
tion. Here, we remove the neutral stance and keep the positive 
and negative stances as the two classes. BERT achieves the best 
results in terms of both precision and �1 measure. As expected, the 
binary classifcation results are a moderate improvement. The key 
bottleneck, however, remains the zero-shot style of stance detection 
in this third task. 

6  RELATED  WORK  
Since 2019, several Twitter datasets pertaining to the COVID-19 
pandemic have been released by researchers all over the world. 
These collections have seen manifold use in natural language un-
derstanding and social network analysis tasks. A corpus of over 8 
million tweets was provided by Dimitrov et al. [14] for a range of 
knowledge discovery tasks. They use an established RDF schema 
to provide data-modeling vocabularies, where the data includes 
metadata about the tweets, as well as about the extracted enti-
ties, hashtags, user mentions, sentiments, and URLs. Further, they 
describe protoypical use cases of this corpus, such as trend anly-
sis, citation discovery models, prediction of a tweet’s virality, and 
most relevant to our work – stance detection. Larger multilingual 
datasets have also been developed, such as the collection of over 123 
million tweets to track misinformation and rumor (Chen et al. [11]). 
For a more fne-grained analysis of fake news (political as well as 
medical) surrounding the pandemic, Alam et al. [2] developed a 
manually annotated dataset of 16K tweets. Their dataset has been 
incorporated in the development of the claim detection models in 
this work (§3). While our task is clearly diferent, we underscore 
that our annotated dataset, too, ofers the distinction of having 
explicitly labeled claim spans within each individual tweet. 

Beyond the provision of large datasets, a sizeable body of work 
exists on the identifcation of claims. This may be due, at least in 
part, to how claims are woven into argumentation (fallacious or 
otherwise). Indeed, the central component of an argument is its 
claims [8]. In spite of this central importance of claims in natural 
language processing tasks, there is no universally accepted proce-
dure or substantial agreement – not even among human readers – 
defning what constitutes a claim [22]. Nevertheless, ClaimBuster – 
a claim detection system proposed by Hassan et al. [18], based on a 
large corpus of annotated debates – has gained widespread atten-
tion. Their study ofers an end-to-end pipeline for fact-checking, 
including a claim spotter that scores sentences for check-worthy 
factual claims based on a scoring model trained on the token and 
part-of-speech features, a claim matcher that uses token-based and 
semantic similarity to retrieve fact-checked claims from a curated 
database, and a claim checker that collects evidence using external 
resources and APIs. Their work, however, scores entire sentences 
instead of precisely extracting claims from within a sentence. 

A precise extraction of claims from within a sentence calls for 
sequence labeling, an important NLP task recently discussed by 
He et al. [19], among others. Their survey reviews state-of-the-art 
deep learning techniques applied to three fundamental sequence la-
beling tasks: named entity recognition (NER), part-of-speech (POS) 
tagging, and text chunking. Many deep learning systems use bidi-
rectional long short-term memory networks (BiLSTM) to encode 
the input and a CRF layer for the fnal prediction (Ma and Hovy 
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[25], among others). More recent work extended this approach 
to use context-dependent embeddings such as ELMo, BERT, and 
Flair [31, 35]. In this work, our sequence labeling task for claim 
extraction was designed along these lines (see §4.1). 

Even though our work is distinct from traditional stance detec-
tion, we fnd it prudent to ofer a brief discussion of prior work 
in this area. As a research topic, detecting an author’s stance pre-
dates the COVID-19 pandemic. Mohammad et al. [28], for instance, 
present a dataset of tweet-target pairs annotated for stance as well 
as sentiment. This was one of the frst studies to demonstrate that 
while the knowledge of sentiment benefts stance detection, senti-
ment alone is not sufcient. Their use of support vector machines 
to classify the stance toward fve fxed targets was further improved 
with distant supervision and the incorporation of word embeddings. 

Since 2019, a majority of improvements in stance detection has 
used targets related to COVID-19. In this work, we have utilized 
the dataset presented by one such work, by Glandt et al. [15], who 
provide annotations on over 7K tweets about the author’s stance 
toward one of four fxed targets. Their labels were obtained by 
posing three questions to the annotators, including one question 
explicitly about the sentiment expressed in the tweet. In their work, 
it was demonstrated that signifcant improvements can be achieved 
by the use of (i) domain-specifc pretrained language models, and (ii) 
domain adaptation incorporate previous stance detection datasets. 

While prior research has not formulated dynamic stance detec-
tion as in this work, there are two specifc stance detection studies 
in the spirit of low-shot learning, that look into a similar task. One 
study on cross-topic stance detection learns to identify the stance 
towards one target (say, the Pfzer vaccine) from texts that only 
mention other targets (say, Anthony Fauci) [3]. Thus, while the 
targets are not seen “on the fy”, as in our work, this work demon-
strates that the stance toward a target can sometimes be learned 
without explicit mention of that same target. Along a diferent 
line, Hardalov et al. [17] survey stance detection and its relation to 
fact-checking and fake news detection. They defne the target in 
terms of the textual context toward which the stance is expressed, 
and show that stance can be used as a component of fact-checking. 
Perhaps the most pertinent work in this direction is the very frst 
fake news challenge, organized by Pomerleau and Rao [32]. In this 
challenge, instead of true/fake labels, the task was to determine the 
stance of a news article’s headline vis-à-vis its body. This challenge 
can be viewed as a one-shot stance learning task, and in that spirit, 
is similar to our third task. The latter, it is worth noting, may be 
regarded as zero-shot stance learning because there are no fxed 
targets, and the model encounters entirely targets it never saw 
during training or development. 

7  CONCLUSION  AND  FUTURE  WORK  
We present a new Twitter dataset related to COVID-19, annotated 
for claim extraction from within tweets and also for dynamic stance 
detection with no targets fxed a priori. Given that the current 
information ecosystem is flled with messages that mix objective 
claims with subjective commentary and remarks, it is both difcult 
and imperative that we strive toward the development of models 
that can accurately distinguish between the two. This distinction is 
critically important for fact-checking, as argued by Hardalov et al. 

[17], we hope that our work has brought the two felds of research 
on misinformation detection and stance detection closer. 

This work has demonstrated that accurate claim extraction is 
possible by modeling it as a sequence labeling problem. We have 
also provided the frst step toward dynamic stance detection. Our 
experiments on the incorporation of traditional stance detection 
datasets demonstrates that there is signifcant room for improve-
ment in this direction, and we hope that this frst study on dynamic 
stance detection paves the way for future research. We also note 
that the limited success in our third task is due at least in part to the 
size of the dataset. We intend to develop much larger corpora for 
the tasks explored in this work, and hope to see others developing 
similar datasets as well. 
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Table 10: Reproducing the results of Alam et al. [2], using 
binary data for whether a tweet contains a verifable factual 
claim, and testing on DS2-Test. 

Dataset Class Precision Recall �1 

BERT 

DS2-Eng ncw 72.28 67.32 69.71 
cw 81.79 85.04 83.38 
Macro Avg 77.03 76.18 76.55 
Micro Avg 78.30 78.54 78.37 

DS2 ncw 75.94 66.01 70.63 
cw 81.69 87.88 84.67 
Macro Avg 78.81 76.95 77.65 
Micro Avg 79.60 79.86 79.52 

RoBERTa 

DS2-Eng ncw 71.97 73.86 72.90 
cw 84.62 83.33 83.97 
Macro Avg 78.29 78.59 78.44 
Micro Avg 80.00 79.86 79.91 

DS2 ncw 79.39 67.97 73.24 
cw 82.27 89.77 86.18 
Macro Avg 81.13 78.87 79.71 
Micro Avg 81.60 81.77 81.43 

XLNet 

DS2-Eng ncw 78.47 70.26 74.14 
cw 83.75 88.83 86.21 
Macro Avg 81.11 79.54 80.18 
Micro Avg 81.80 82.01 81.78 

DS2 ncw 79.40 69.28 74.00 
cw 83.42 89.58 86.39 
Macro Avg 81.41 79.43 80.19 
Micro Avg 82.00 82.13 81.84 
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