
i
i

“output” — 2022/2/5 — 0:39 — page 1 — #1 i
i

i
i

i
i

Journal of Ubiquitous Systems & Pervasive Networks

Towards Performance of NLP Transformers on URL-Based Phishing
Detection for Mobile Devices

Hossein Shirazi a∗, Katherine Haynes b, Indrakshi Ray a

aComputer Science Department, Colorado State University, Fort Collins, CO, USA
bCooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA

{Hossein.Shirazi, Katherine.Haynes, Indrakshi.Ray}@colostate.edu

Abstract

Hackers are increasingly launching phishing attacks via SMS and social media. Games and dating apps introduce yet
another attack vector. However, current deep learning-based phishing detection applications do not apply to mobile devices
due to the computational burden. We propose a lightweight phishing detection algorithm that distinguishes phishing from
legitimate websites solely from URLs to be used in mobile devices. As a baseline performance, we apply Artificial Neural
Networks (ANNs) to URL-based and HTML-based website features. A model search results in 15 ANN models with
accuracies >96%, comparable to state-of-the-art approaches. Next, we test the performance of deep ANNs on URL-
based features only; however, all models perform poorly with the highest accuracy of 86.2%, indicating that URL-based
features alone are not adequate to detect phishing websites even with deep ANNs. Since language transformers learn
to represent context-dependent text sequences, we hypothesize that they will be able to learn directly from the text in
URLs to distinguish between legitimate and malicious websites. We apply three state-of-the-art deep transformers (BERT,
ELECTRA, and RoBERTa) for phishing detection. Testing custom and standard vocabularies, we find that pre-trained
transformers available for immediate use (with fine-tuning) outperform the model trained with the custom URL-based
vocabulary. In addition, we test a thinner BERT transformer which is suitable for lightweight devices like mobiles, called
MobileBERT. Our results emphasize that evaluation metrics of this model are competitive to other models in this study, yet
the testing time is significantly less, making this model a choice for embedding phishing detection algorithms in mobile
phones. Using pre-trained transformers to predict phishing websites from only URLs has five advantages: 1) requires little
training time (230 to 320 s), 2) is more easily updatable than feature-based approaches because no pre-processing of URLs
is required, 3) is safer to use because phishing websites can be predicted without physically visiting the malicious sites,
4) is easily deployable for real-time detection and is applicable to run on mobile devices, and 5) using a mobile specific
transformer yields comparable performance and predicts 3 times faster than the other transformer models in this study.

Keywords: · Social Engineering Attack · Phishing Detection · Deep learning · Transformers · Mobile Application

1. Introduction
Phishing is the top Internet crime by victim count as per the FBI
[1], resulting in a $54 million loss in 2020. Phishing attacks are
increasingly being launched via SMS text, social media, gaming,
and dating applications. People tend to be less careful when using

their mobile devices and are therefore more vulnerable [2]. A
lightweight phishing detection approach that can be installed in
mobile devices is very much needed.

Supervised deep learning appears to be a promising approach
for phishing detection [3–5]. Machine learning requires a large
volume of training data; such data may be unavailable and dataset
creation is labor-intensive. For creating phishing datasets, one
must visit the malicious websites, understand the code, and

∗Corresponding author. Tel.: +19708898840
Fax: ; E-mail: Hossein.Shirazi@colostate.edu
© 2022 International Association for Sharing Knowledge and Sustainability. 1
DOI: 10.5383/JUSPN.17.01.005

Volume 17, No. 1 (2022) pp. 35-42

mailto:Hossein.Shirazi@colostate.edu

i
i

“output” — 2022/2/5 — 0:39 — page 2 — #2 i
i

i
i

i
i

extract the relevant features. Moreover, as attackers modify their
approach, the process must be repeated. Phishing detection using
only URL information alleviates these problems, thus recent
development in language transformers has motivated us to look
into phishing detection using only URLs.

In this work, we use a dataset developed by Shirazi et al. [6]
which consists of 48 URL and HTML-based website features,
and we test the ability of a deep classification Artificial Neural
Network (ANN) to detect phishing websites. First, we test ANNs
on URL-based features only. Even after an extensive architecture
and hyper-parameter search, this method did not perform well. We
next use URL and HTML-based features and obtained an accuracy
of 97% with the top-performing model (ANNF), comparable to
state-of-the-art approaches. We use this as a baseline for our
transformer-based model.

Transformers are deep learning Natural Language Processing
(NLP) models designed to handle sequential text for translation
and summarization tasks. The well-known Bidirectional
Embedding Representations from Transformers (BERT [7]) has
been used in the past eight months to detect spam emails [8–
10]. Following on the success of transformers in detecting
phishing emails, we hypothesize that they can take URLs
directly and parse out contextual information that indicates if a
website is legitimate or malicious. Utilizing transformers to detect
phishing leverages data to learn the textual features associated
with websites, rather than relying on pre-determined features
that are observed by experts and require manual efforts. We
apply BERT and two other well-known transformers RoBERTa
(A Robustly Optimized BERT Pretraining Approach) [11] and
ELECTRA (Efficiently Learning an Encoder that Classifies Token
Replacements Accurately [12]) to URL-based phishing detection.

To further reduce training time and computing resources
while utilizing these state-of-the-art deep learning approaches,
we use pre-trained models that are available for immediate use on
language classification tasks, eliminating the need for extensive
training and only requiring fine-tuning of the top model layers.
In addition to applying transfer learning, we custom-train BERT
using a URL-specific vocabulary. Our observations on testing pre-
trained and custom models indicate that pre-trained transformers
perform well, correctly identifying 96% of the websites tested
at a cost of ∼8 minutes to fine-tune. Since these models take
text strings as the input, they can be applied directly to URLs,
eliminating pre-processing features and making them easily
deployable for real-time detection on mobile devices.

Key Contributions. The contributions of this work are as
follows:

(i) We compare the performance of seven state-of-the-art deep
learning approaches.

(ii) We show that ANNs can detect phishing from URL and
HTML-based features with high performance.

(iii) We demonstrate that using ANNs on URL-based features
alone is not well-suited to detect phishing websites.

(iv) We illustrate that NLP models can be applied to
website phishing detection solely using URL strings, revealing
that pre-trained transformers provide phishing detection with
similar performances to other approaches but with four distinct
advantages: 1) it requires minimal training time (less than 8
minutes); 2) it is easily updatable as it does not require feature
collection, determination, and pre-processing (thus, even if
attackers change their strategy it will still work); 3) it is safer
to use, as it removes the requirement of visiting malicious sites;

and 4) it is easily deployable for real-time detection and can be
used in mobile devices.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 provides an overview and
Section 4 discusses the details of our approach: Section 4.1
defines Task 1, which uses both URL- and HTML-based features
for phishing detection; Section 4.2 discusses Task 2, which
exclusively uses URL-based features; and Section 4.3 elaborates
on Task 3, using NLP transformers. Section 5 evaluates our results
against state-of-the-art, and Section 6 concludes the paper.

2. Related Work
2.1. Content-Based Phishing Detection

Website phishing detection using deep learning typically focuses
on content and/or URLs to define and obtain optimal features
to eliminate overfitting. Zhu et al. [13] proposed the Optimal
Feature Selection Neural Network (OFS-NN) to combine optimal
feature selection into an ANN framework by introducing a feature
validity value. Zhu et al. [5] combined decision trees and local
search methods to select optimal features, clustering to remove
duplicates, and parameter optimization in their model DTOF-
ANN (Decision Tree and Optimal Features based Artificial Neural
Network). Next, Saravanan et al. [4] used a genetic algorithm
to reduce the dimensionality of selected features. Once the
optimal features are determined, the proposed framework uses
the Adaptive Resonance Theory Mapping (ARTMAP) neural
network classifier to determine if a website is legitimate. Finally,
Yang et al. [14] utilized synthetic samples in a novel approach
to phishing detection based on the Non-Inverse matrix Online
Sequence Extreme Learning Machine (NIOSELM), using an
adaptive sampling algorithm to generate synthetic minority class
samples in order to avoid biases and using an autoencoder to
denoise the data and reduce the data dimensionality.

2.2. URL-based Phishing Detection

Another strategy to detect phishing websites directly uses URLs.
While a number of methods have combined website content with
URL strings (e.g. [15–19]), here we outline four models that solely
utilize URLs. In 2017, Saxe et al. [20] proposed a Convolutional
Neural Network (CNN) on raw character input embedded as
multi-dimensional vectors to find patterns in characters, which
are then fed into three fully connected ANN layers. In the past
eighteen months alone, we have identified three more such studies.
First, Huang et al. [3] proposed a deep learning approach that
uses a CNN module for character-level extraction fused with
a Recurrent Neural Network (RNN) for word-level extraction.
Second, Xiao et al. [21] proposed a CNN combined with a multi-
head self-attention approach that learns URLs’ inner structures,
exploiting character relationships. Third, Wei et al. [22] used
one-hot encoding combined with an embedding layer in a CNN
to focus on sensitizing the network to detect URL distortions.
While solid performers, these methods are more computationally
expensive than our proposed method.

Transformers have been used for phishing email detection, or
detecting emails that are spreading phishing attacks. For example,
Lee et al. [23] proposed a hybrid approach that considers both
email’s content and context features from email headers. In a

2

H. Shirazi et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 17 (2022) 35-42

i
i

“output” — 2022/2/5 — 0:39 — page 3 — #3 i
i

i
i

i
i

H. Shirazi et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 00-00

different study, Thapa et al. [24] used federated learning in anti-
phishing email detection by transformers.

Xu [25] introduced a transformer-based phishing detection
model that is very similar to OpenAI’s GPT model. This proposed
model has outperformed six existing classification detection
models with 97.3% of detection accuracy. Maneriker et al. [26]
performed a comprehensive analysis of transformer models on
the phishing URL detection task. Authors compared standard and
domain-specific masked language models to fine-tuned BERT
and RoBERTa models and proposed URLTran. This proposed
model uses transformers to significantly improve the performance
of phishing URL detection, and the authors considered classical
adversarial black-box phishing attacks such as homoglyphs and
compound word splits to improve the robustness of URLTran.

This work is an extension to our previous work [27] on URL-
based phishing detection. Previously we used NLP transformers
to detect phishing websites from legitimate ones solely based on
the URL. Two transformer models of BERT and ELECTRA have
been evaluated. In this work, we added two more transformers
of RoBERTa and Mobile-BERT. The latest one is a lightweight
specific transformer that is suitable for mobile devices.

3. Approach Overview and Methodology
While extracting both content and URL features result in
high-performing phishing detection, it is laborious and time-
consuming. Here we investigate using only URL-based
information to yield reliable detection of malicious websites.
Specifically, we determine if deep classification ANNs can be
used for this task or if transformers are necessary to process the
text and succinctly find appropriate features. In addition, we check
whether mobile-specific transformers have lower testing time but
similar performance. For this, we have defined four tasks:

• Task 1: Determine how deep classification ANNs perform on
content and URL-based website features.

We utilize both URL features and website content to
provide a baseline top performance expected using a feature-
based approach. Using a synthetically-extended dataset
designed to make phishing detection more robust against
adversarial attacks [28, 29], we perform a guided hyper-
parameter search to find the best ANN.

• Task 2: Investigate how well deep classification ANNs
perform on URL-only website features.

Using only URL-based features, we again perform a
guided search to find the best ANN and compare our results
to Task 1, determining the importance of website content in
feature-based deep learning approaches.

• Task 3: Explore the use of transformers to detect phishing
directly on URL strings.

We apply BERT, ELECTRA, and RoBERTa to website
phishing detection using transfer learning, fine-tuning them
on website URL strings. Because they learn patterns in text,
we hypothesize that they will detect phishing websites solely
from the URL, saving time in collecting and preparing website
feature data as well as significantly reducing training time and
resources.

• Task 4: Evaluate a light-weight version of the BERT
transformer suitable for running on mobile devices.

We apply MobileBERT, a thin version of the BERT
transformer. Empirical studies show that MobileBERT is

Table 1. Summarization of the datasets used in this study. The number
of phishing (Phi.) and legitimate (Leg.) websites are shown, along
with the number of features (Fea.). The URL-Only and URL-Vocab
datasets are used only with transformers and thus do not require any
feature extraction.

Name Author Phi. Leg. Fea.

DS-Cnt-Ftrs Shirazi et al. [28, 29] 10K 10K 48
DS-URL-Ftrs Shirazi et al. [28, 29] 10K 10K 31
DS-URL-Only This study 10.9K 10.9K N/A
DS-URL-Vocab This study 0 1.7M N/A

4.3 times smaller and 5.5 times faster than the BERT-Base
version. Similar to Task 3, we fine-tune this model on website
URL strings and evaluate the performance. Additionally, we
evaluate how much faster this mobile-specific transformer is
in comparison with other models.

3.1. Datasets Used in Experiments

We use the following four datasets:

• DS-Cnt-Ftrs: In 2018, Tan et al. [30] created a dataset for
phishing detection comprised of 48 URL-based and HTML-
based features extracted from 5000 phishing webpages and
5000 legitimate webpages. The web pages included in this
dataset were downloaded from January to May 2015 and
from May to June 2017. The phishing webpage sources
are PhishTank.com and OpenPhish.com, and the legitimate
webpage sources are Alexa and CommonCrawl.org. In 2020,
Shirazi et al. [6] extended this dataset using adversarial
sample generation. Using the same features, they used an
autoencoder to generate samples mimicking existing websites
while containing features designed to bypass trained machine
learning phishing detection models. This extended the dataset
by adding 10,000 phishing web pages and 10,000 legitimate
web pages, and we use this version of the dataset.

• DS-URL-Ftrs: We select the URL-related features from the
DS-Cnt-Ftrs dataset and create a subset of it. This new dataset
has 31 out of the 48 features available in the original dataset.

• DS-URL-Only: To investigate deep-learning approaches on
URLs directly, we create a dataset of 10,955 phishing
URLs from PhishTank.com and 10,955 legitimate URLs
from CommonCrawl.org. The phishing URLs include sites
discovered until November 27, 2020, when we downloaded
the dataset. The legitimate URLs include websites from
randomly selected files from the period of January 2018 to
November 2020.

• DS-URL-Vocab: To use a URL-specific vocabulary, we
create a dataset of 1,730,754 websites from CommonCrawl.org.
Since the CommonCrawl.org corpus contains petabytes of
data collected since 2008, to include a variety of websites, we
randomly selected URLs from January 2018 until November
2020.

In all experiments, the training and testing subsets consisting
of 80% and 20% of the data, respectively.

3

i
i

“output” — 2022/2/5 — 0:39 — page 4 — #4 i
i

i
i

i
i

H. Shirazi et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 00-00

3.2. ANN Optimization for Feature-Based Phishing
Detection

In order to optimize classification ANNs for feature-based
phishing detection, we perform a guided model architecture and
hyperparameter search using Hyperopt [31]. We conduct searches
using the Tree of Parzen Estimators (TPE) algorithm, a sequential
model-based optimization approach that sequentially constructs
models to approximate the performance of hyperparameters based
on historical measurements [32]. We divide the search space into
two areas: input data options during pre-processing and model
options. We search for the optimal number of features to include
in the ANN, ranging from four to the total number of features.
The features included per selected number are pre-calculated
using the chi-square statistic on the original dataset. The ANN
model architecture search includes options for the number of
epochs (number of times the learning algorithm iterates through
the entire training set), the optimizer (a method used to update
model weights), the learning rate (the rate at which weights can
change), the momentum (influence of previous changes), and the
number of model layers.

We perform all ANN experiments with Python using
TensorFlow on Google Colab with a GPU. For each optimization,
we run 100 model searches. For each search, we use 3-fold
cross-validation during training. One 100-model search takes∼10
hours, with each model taking ∼3-5 minutes to train, depending
on the size of the model.

3.3. Deep Language Processing Models

In order to thoroughly utilize current pre-trained transformers, we
test four state-of-the-art deep language processing models: BERT,
Mobile-BERT, ELECTRA, and RoBERTa.

3.3.1. BERT and Mobile-BERT

As described by Devlin et al. [7], BERT consists of a multi-
layer bidirectional encoder that learns contextual relationships.
BERT’s framework consists of two steps: (i) pre-training, during
which the model is trained using unlabeled data on masked
language modeling and next sentence prediction tasks, and (ii)
fine-tuning, during which the model is initialized with the pre-
trained parameters that are adjusted using task-specific labeled
data.

We focus on four pre-trained BERT models.1 The first is
BERT-Base (uncased), which is a 12-layer model with 110 million
parameters. The second is BERT-BaseC (cased), which is the
same as BERT-Base but uses case-sensitive tokens. Third is
BERT-Large (uncased), which uses 24-layers and 340 million
parameters. And last is MobileBERT, which is a thin version
of BERT-LARGE and has 24 layers but with only 24.5 million
parameters.

To compare using models pre-trained on a generic corpus
versus a URL-specific vocabulary, we create a custom BERT
model trained on an uncased URL-generated corpus. Using
the DS-URL-Vocab dataset, we tokenize each URL using the
SentencePiece tokenizer, breaking them apart by the forward-
slashes and saving punctuation, numbers, and text groupings

1 BERT pre-trained models and code are available in the Transformers
library [33] and at https://github.com/google-research/bert.

Table 2. Transformer summarization, showing the pre-trained models
tested along with their layers and number of parameters.

Transformer # Layers # Parameters

BERT_BASE 12 109M
BERT_C 12 109M
BERT_LARGE 24 334M
Mobile_BERT 24 24.5M
ELECTRA_Base 12 110
ELECTRA_Base 24 335M
RoBERTa 12 110M

(using lowercase text only). We use the maximum vocabulary
size (128,000), a maximum sequence length of 128, and the same
hyper-parameter setup as proposed by Devlin et al. [7]. We train
the model for one million steps, which took 60 hours.

3.3.2. ELECTRA

ELECTRA is an efficient pre-training approach that uses replaced
token detection described by Clark et al. [12]. ELECTRA consists
of a generator and a discriminator. After mapping input tokens into
contextualized sequences, the generator learns to predict masked-
out tokens while the discriminator learns how to distinguish tokens
in the data from tokens that have been replaced by generator
samples. Like BERT, ELECTRA can be fine-tuned for specific
tasks.

ELECTRA currently has three released pre-trained models:
ELECTRA-Small with 12 layers and 14 million parameters,
ELECTRA-Base with 12 layers and 110 million parameters, and
ELECTRA-Large with 24 layers and 335 million parameters.2

The vocabulary and pre-training datasets are the same as used for
BERT.

3.3.3. RoBERTa

RoBERTa builds on BERTs language masking strategy, wherein
the system learns to predict intentionally hidden sections of
text within otherwise unannotated language examples. RoBERTa
modifies key hyperparameters in BERT, including removing
BERTs next-sentence pretraining objective and training with
much larger mini-batches and learning rates. This allows
RoBERTa to improve on the masked language modeling objective
compared with BERT and leads to better downstream task
performance. RoBERTa begins by training BERT models with
the same configuration as BERT-BASE with 12 layers and 110M
parameters.

3.3.4. Transformer Optimization

Table 2 summarizes the number of layers, parameters in each
model we used in this study. We perform all of the transformer-
based experiments with Python using TensorFlow on Google
Colab with a TPU. For all of the transformers, we fine-tune the top

2 ELECTRA pre-trained models and code are available in
the Transformers library [33] and at https://github.com/google-
research/electra.

4

i
i

“output” — 2022/2/5 — 0:39 — page 5 — #5 i
i

i
i

i
i

H. Shirazi et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 00-00

model layers following the procedure outlined by TensorFlow3,
using the sequence classifier methodology and the URL training
dataset (Section 3.1). The specific parameters used for fine-tuning
each of the pre-trained models is discussed in Section 4.3.

4. Approach Details
4.1. Task 1: Website URL-Based and HTML-Based Feature

Phishing Detection

After performing the model search using the feature dataset, the
top 40 models all achieve testing accuracies > 91%, with the
top 15 models achieving accuracies > 96%. As indicated by
0.98 normalized true-positive and 0.97 true-negative values of
the top model (ANNF), the majority of the samples are correctly
predicted. The 0.03 false-negative is slightly higher than the 0.02
false-positive, indicating a higher tendency to predict a website
as legitimate when it is malicious.

Comparisons to the classifiers tested by Shirazi et al. [6] are
shown in Figure 1. The ANNF model yields similar performances
to the other top-performing classifiers, GB and RF. Interestingly,
the ANNF precision is higher than the recall, while the opposite
is true for the other two top performers. These relationships show
that ANNF has a higher positive predictive value and thus has
a lower tendency to predict a website is malicious when it is
not; however, ANNF’s lower recall indicates that it misses more
phishing websites overall. These results show that using deep
neural networks is comparable to both GB and RF classifiers for
detecting phishing websites.

Fig. 1: Phishing detection score comparisons between the
neural network in this study (ANNF) and other classifier
models tested by [6]. DT=Decision Tree, GNB=Gaussian
Naïve Bayes, GB=Gradient Boosting, KNN=k-Nearest Neighbor,
RF=Random Forest, SVC=Support Vector Machine (linear), and
SVM=Support Vector Machine (gaussian).

4.2. Task 2: URL-Based Feature Only Phishing Detection

To test how ANNs perform on features obtained only from URLs,
we transform the URL dataset into 31 URL features. We use
all of the URL features from the feature dataset and added
features for the number of each different punctuation symbol
and counts of the numbers, lowercase and uppercase letters.
Even with a 100-model search, all models perform poorly. The
performance is substantially lower than when website content

3 https://www.TensorFlow.org/official_models/fine_tuning_bert

is included, with the top model only achieves 86.2% accuracy
and normalized true-positive and true-negative values of 0.84 and
0.95, respectively. While both the true-positive and true-negative
predictions are lower compared to ANNF, the correct prediction
of phishing websites suffers more, indicating that a substantial
number of malicious sites will go undetected. While performance
may increase with the selection of different URL features, it
seems unlikely that any additional features based solely on URL
will account for the drop in performance by removing website
content. This result indicates that website content (via HTML-
based features) is vital in feature-based phishing detection and that
even deep-learning ANNs are not well-suited to detect phishing
using pre-determined URL features alone.

4.3. Task 3: Transformer Phishing Detection

We perform five experiments using BERT, ELETRA, RoBERTa,
and MobileBERT. First, we train a BERT base model using
a URL-specific uncased vocabulary (BERT-URL). Next, we
try a hybrid approach and add the BERT-URL predictions
(0=legitimate, 1=phishing) into an ANN that utilizes only URL-
based information as in Task 2, again performing a guided
search to find the best model (BERT-ANN). Last, we perform
experiments fine-tuning the BERT-Base, BERT-BaseC, and
BERT-Large pre-trained models using the URL training dataset.
For each, we run a series of experiments to tune the parameters.
For BERT-Base, we achieve the highest accuracy using a learning
rate of 8 × 10−5, 2 epochs, and a batch size of 128, taking 319
s to fine-tune. For BERT-BaseC, we use the same learning rate
and batch size but performed 4 training epochs, which took 491
s. Finally for BERT-Large, to compensate for a small batch size
of 32, we use a learning rate of 5 × 10−6 and 3 epochs, which
took 1867 s.

Figure 2 shows the accuracy, F1-Score, precision, and recall
between the BERT models. The BERT-Base model is the most
consistent model across all metrics, with the highest accuracy,
F1-Score, and recall. Adding case sensitivity does not improve
the model, but instead slightly lowers all four metrics. BERT-
Large has the highest precision due to its low number of
false positives; however, it is the most inconsistent across the
metrics and has the lowest accuracy, F1-Score, and recall. The
low recall means that more phishing websites go undetected
with this model. The BERT-Large model may have the worst
overall performance for two reasons. The first reason is the
limited data used to fine-tune and test the model. Even the
addition of a couple of hundred phishing and legitimate websites
impacted the performance, indicating that this problem could
benefit from creating adversarial-generated synthetic URL data
as done for the website features. The second reason is the
computational resources. Google Colab has TPU number and
memory limitations, which we tried to exhaust; however, even
with this, the small maximum batch size of 32 is likely insufficient
to optimize this large model.

The custom BERT model trained on a URL corpus does
not perform as well as the pre-trained models. There are three
likely reasons for this. First, we use a dataset of 1.7 million
URLs, whereas the BERT pre-trained models use a dataset of
2,500 million words. Second, because URLs are riddled with
punctuation, we include these in the vocabulary; however, this
could very likely be harming the performance. Third, due to
computational constraints, we only use a maximum sequence

5

i
i

“output” — 2022/2/5 — 0:39 — page 6 — #6 i
i

i
i

i
i

H. Shirazi et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 00-00

0.900

0.925

0.950

0.975

1.000

BERT-URL BERT-ANN BERT-Base BERT-BaseC BERT-Large ELECTRA-Small ELECTRA-Base ELECTRA-Large RoBERTa MobileBERT

Accuracy F1 Score Precision Recall

Fig. 2: Evaluation metrics for each of the five BERT models, three ELECTRA models, RoBERTa model, and MobileBERT model used
in experiments.

length of 128 versus the 512 used in the pre-trained models. Since
URLs are often longer than 128, it is possible that not including
longer sequences degrades the performance.

Using a hybrid approach by combining BERT-URL
predictions with an ANN optimized on pre-created features
from the URLs (BERT-ANN) minimally improves the model
performance. All four metrics increase slightly (< 0.005),
indicating that adding URL-based features does not provide
any additional information not already captured by the BERT
methodology of language processing. This result shows promise
for NLP approaches using URLs solely to obtain high phishing
detection accuracy as these models continue to improve.

We perform three ELECTRA experiments, fine-tuning and
optimizing three different pre-trained models. For ELECTRA-
Small, we settle on a learning rate of 8 × 10−5 with 8 epochs
and a batch size of 128, taking 358 s. ELECTRA-Base uses the
same learning rate and batch size, but with 6 epochs, taking 489
s. ELECTRA-Large uses a learning rate of 8×10−6, a batch size
of 32, and 5 epochs, taking 2100 s.

Figure 2 shows ELECTRA’s performances. ELECTRA-Base
has the highest mean score across all metrics, with a value of 0.963
compared to ELECTRA-Small’s value of 0.96. The ELECTRA-
Base model has the highest accuracy, F1-Score, and precision,
while the ELECTRA-Small model has the highest recall. Like
BERT, ELECTRA-Large has the poorest performance, again
likely due to data and computation limitations.

Figure 2 shows that BERT and ELECTRA have similar
accuracy, with the highest values of 96.1% and 96.3%,
respectively; both models have F1-Scores nearly identical to their
accuracy. ELECTRA has slightly higher precision and lower
recall, whereas the opposite is true for BERT. While ELECTRA
has higher positive predictive values, it has a lower hit rate and is
more likely to miss phishing websites than BERT. Reasonable
scores demonstrates that ELECTRA and BERT have skills at
predicting phishing websites directly using URLs.

We perform one RoBERTa experiment and report the results
in Figure 2. Similar to previous models, RoBERTa, was pre-
trained on general-purpose NLP tasks, and we fine-tuned it for
the domain-specific task of phishing detection using the DS-
URL-Only dataset and training for 3 epochs. Results show that
RoBERTA’s performance is not as good as other models. For
example, the accuracy is 13% less than ELECTRA-Large and
BERT-URL, two other competitor models.

Finally, we fine-tune MobileBERT for phishing detection and
include the results in Figure 2. While this transformer has less
parameters, this does not negatively impact the performance. In
contrast, both the accuracy and precision are higher than those for
BERT-Base and ELECTRA-Base. This proves that having more
parameters does not necessarily improve the performance for a
domain-specific task.

4.4. Task 4: MobileBERT Time Analysis

Comparing the prediction time of MobileBERT against BERT-
Base, MobileBERT performs 3 times faster, taking only 2.8 s
to predict 10 samples on Google Colab’s TPU. Additionally,
MobileBERT only took ∼230 s to fine-tune, which is less than
the training time of the top ANN feature-based model (∼300 s)
and with the distinct advantage of using URLs directly rather than
requiring feature specification and collection. This indicates that
MobileBERT is an excellent choice for running on light-weight
devices (like mobiles) for its training/updating simplicity, low
computation cost, fast prediction rate, and high performance.

4.5. Evaluation Against Related Works

Evaluation metrics for our top models are shown in Figure 3
(bold), along with a compilation of results for the state-of-the-
art models discussed in the related work (Section 2). To directly
compare our results, for BERT and ELECTRA we show the model
with the highest mean overall score, which was the pre-trained
base configuration for both. We do not include Task 2’s results due
to its substantially lower performances, again emphasizing that
website content is important in feature-based phishing detection.

Figure 3 shows that ANNF performs similarly to current
models, outperforming the well-known phishing approach
XGBoost. ANNF is also one of the most consistent models across
all metrics. For example, both DTOF-ANN and OFS-NN have
high accuracies but lower recalls than ANNF. This behavior is
not optimal in phishing detection because it indicates that more
phishing websites may go undetected using these approaches.
Both BERT and ELECTRA have performances slightly lower
than the top models but on par with XGBoost and higher than
ARTMAP. MobileBERT outperforms both BERT and ELECTRA
in terms of accuracy and precision, with values on par with ANNF
and NIOSELM; however, it also has one of the lowest recall
scores, performing only slightly better than ARTMAP for this
metric.

6

i
i

“output” — 2022/2/5 — 0:39 — page 7 — #7 i
i

i
i

i
i

H. Shirazi et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 00-00

ELE
CT
RA

BE
RT

AN
N

Mo
bil
eB
ER
T

Fig. 3: Scores for the top ANN, BERT, ELECTRA, and
MobileBERT models in this study (bold) against recently
published model results. ACNN results are from Zhang et al.
[19], ARTMAP results are from Saravanan et al. [4], DTOF-ANN
results are from Zhu et al. [5], NIOSELM results are from Yang
et al. [14], OFS-NN results are from Zhu et al. [13], Wei-CNN
results are from Wei et al. [22], and XGBoost results are from
Yang et al. [14].

5. Conclusions
Although using website content-based features and creating
auxiliary data to train a deep ANN results in the highest-
performing phishing detection model in this study, this
methodology is very time-consuming and computationally
expensive. Further, using only URL-based features in an ANN
performs poorly, indicating that transformer-based models are
required to achieve high-performance phishing detection solely
using URLs directly.

To this end, all pre-trained transformers show promise
compared to other current approaches. Although transformers
currently have slightly lower performances than several of the
top-performing models, they have the distinct advantage that they
do not require pre-processing of URLs, making them more easily
updatable than feature-based approaches. Finally, due to their
ability to predict phishing websites solely from URLs, they are
safer to use because malicious sites can be predicted without
physically visiting the page. This combination of advantages
makes pre-trained transformers easily deployable for real-time
detection, indicating they are a viable option for website phishing
detection. Specifically, we show that MobileBERT can perform
nearly as well as other state-of-the-art models, yet it requires less
training time and predicts phishing sites faster than the other
transformer and feature-based approaches tested in this study,
making it a strong candidate for light-weight and mobile devices.

For future work, we want to test our proposed approach on real
mobile devices and evaluate the performance and running time to
ensure it is applicable for such devices. In addition, since we
had success using NLP transformers to detect phishing websites
it is likely that transformers also can be used in spam detection
problems, where spam emails can be used to train transformers
on the downstream task of spam detection on mobile devices.

Acknowledgements
The work was supported in part by funding from NSF under Award
Numbers CNS 1822118, IIS 2027750, Cyber Risk Research,
Statnett, NIST, AMI, and ARL.

References
[1] Federal Bureau of Investigation (FBI) Internet Crime

Complaint Center. (2021) “2020 Internet Crime Report.”
Washington, D.C., USA, https://www.ic3.gov/Media/PDF/
AnnualReport/2020_IC3Report.pdf.

[2] Corrata. (2021) “Mobile phishing is becoming more
prevalent and more difficult to follow.” Available at https:
//corrata.com/the-many-faces-of-mobile-phishing/.

[3] Y. Huang, Q. Yang, J. Qin, and W. Wen. (2019)
“Phishing URL detection via CNN and attention-based
hierarchical RNN.” Proc. of IEEE International Conference
on Trust, Security, and Privacy in Computing and
Communications, https://www.doi.org/10.1109/TrustCom/
BigDataSE.2019.00024.

[4] P. Saravanan and S. Subramanian. (2020) “A framework for
detecting phishing websites using GA based feature selection
and ARTMAP based website classification.” Procedia
Computer Science, 171, 1083-1092, http://doi.org:/10.1016/j.
procs.2020.04.116.

[5] E. Zhu, Y. Ju, Z. Chen, F. Liu, and X. Fang.
(2020) “DTOF-ANN: an artificial neural network phishing
detection model based on decision tree and optimal
features.” Applied Soft Computing Journal, 95(106505),
https://doi.org/10.1016/j.asoc.2020.106505.

[6] H. Shirazi, S.R. Muramudalige, I. Ray, and A.P. Jayasumana.
(2020) “Improved phishing detection algorithms using
adversarial autoencoder synthesized data.” Proc. of IEEE
Conference on Local Computer Networks, Sydney, Australia.

[7] J. Devlin, M-W. Chang, K. Lee, and K. Toutanova. (2018)
“BERT: Pre-training of deep bidirectional transformers for
language understanding.” Cornell University, New York,
USA, https://arxiv.org/abs/1810.04805.

[8] I. AbdulNabi and Q. Yaseen. (2021) “Spam email detection
using deep learning techniques.” Procedia Computer Science,
184, 853-0509, https://doi.org/10.1016/j.procs.2021.03.107.

[9] S. Kaddoura, O. Alfandi, and N. Dahmani. (2020) “A spam
email detection mechanism for English language text emails
using deep learning approach.” Proc. of IEEE International
Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 193-198, https://doi.org/10.1109/
WETICE49692.2020.00045.

[10] Y. Lee, J. Saxe, and R. Harang. (2020) “CatBERT: Context-
aware tiny BERT for detecting social engineering emails.”
Cornell University, New York, USA, https://arxiv.org/abs/
2010.03484.

[11] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O.
Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov (2019)
“Roberta: A robustly optimized BERT pre-training approach.”
arXiv Preprint, arXiv:1907.11692, https://arxiv.org/abs/1907.
11692.

[12] K. Clark, M.-T. Luong, Q.V. Le, and C.D. Manning. (2020)
“ELECTRA: Pre-training text encoders as discriminators
rather than generators.” Proc. of International Conference
on Learning Representations, https://openreview.net/pdf?id=

7

https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://corrata.com/the-many-faces-of-mobile-phishing/
https://corrata.com/the-many-faces-of-mobile-phishing/
https://www.doi.org/10.1109/TrustCom/BigDataSE.2019.00024
https://www.doi.org/10.1109/TrustCom/BigDataSE.2019.00024
http://doi.org:/10.1016/j.procs.2020.04.116
http://doi.org:/10.1016/j.procs.2020.04.116
https://arxiv.org/abs/1810.04805
https://doi.org/10.1016/j.procs.2021.03.107
https://doi.org/10.1109/WETICE49692.2020.00045
https://doi.org/10.1109/WETICE49692.2020.00045
https://arxiv.org/abs/2010.03484
https://arxiv.org/abs/2010.03484
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB

i
i

“output” — 2022/2/5 — 0:39 — page 8 — #8 i
i

i
i

i
i

H. Shirazi et. al. / Journal of Ubiquitous Systems and Pervasive Networks, 1 (2010) 00-00

r1xMH1BtvB.

[13] E. Zhu, Y. Chen, C. Ye, X. Le and F. Liu. (2019) “OFS-
NN: an effective phishing websites detection model based on
optimal feature selection and neural network.” IEEE Access,
7, https://10.1109/ACCESS.2019.2920655.

[14] L. Yang, J. Zhang, X. Wang, Z. Li, Z. Li, and Y. He. (2021)
“An improved ELM-based and data preprocessing integrated
approach for phishing detection considering comprehensive
features.” Expert Systems with Applications, 165(113863),
http://doi.org/10.1016/j.eswa.2020.113863.

[15] K.M.Z. Hasan, M.Z. Hasan, and N. Zahan (2019)
“Automated prediction of phishing websites using deep
convolutional neural network.” Proc. of International
Conference on Computer, Communication, Chemical,
Materials, and Electronic Engineering, Rajshahi, Bangladesh,
1-4, https://doi.org/10.1109/IC4ME247184.2019.9036647.

[16] H. Le, Q. Pham, D. Sahoo, and S.C.H. Hoi. (2018)
“URLNet: learning a URL representation with deep learning
for malicious URL detection.” Cornell University, New York,
USA, https://arxiv.org/abs/1802.03162.

[17] P. Yang, G. Zhao, and P. Zeng. (2019) “Phishing website
detection based on multidimensional features driven by deep
learning.” IEEE Access, https://doi.org/10.1109/ACCESS.
2019.2892066.

[18] S.Y. Yerima and M.K. Alzaylaee. (2020) “High accuracy
phishing detection based on convolutional neural networks.”
Proc. of International Conference on Computer Applications
& Information Security, Riyadh, Saudi Arabia, 1-6, https:
//doi.org/10.1109/ICCAIS48893.2020.9096869.

[19] X. Zhang, D. Shi, H. Zhang, W. Liu, and R. Li (2018).
“Efficient detection of phishing attacks with hybrid neural
networks.” Proc. of IEEE International Conference on
Communication Technology (ICCT), Chongqing, 844-848,
https://doi.org/10.1109/ICCT.2018.8600018.

[20] J. Saxe and K. Berlin. (2017) “eXpose: a character-
level convolutional neural network with embeddings for
detecting malicious URLs, file paths, and registry keys.”
Cornell University, New York, USA, https://arxiv.org/abs/
1702.08568v1.

[21] X. Xiao, D. Zhang, G. Hu, Y. Jiang, and S. Xia. (2020)
“CNN-MHSA: a convolutional neural network and multi-
head self-attention combined approach for detecting phishing
websites.” Neural Networks, 125, 303-312, http://doi.org/10.
1016/j.neunet.2020.02.013.

[22] W. Wei, Q. Ke, J. Nowak, M. Korytkowski, R.
Scherer, and M. Wozniak. (2020) “Accurate and fast URL
phishing detector: a convolutional neural network approach.”
Computer Networks, 178(107275), http://doi/org/10.1016/j.
comnet.2020.107275.

[23] Y. Lee, J. Saxe and Richard Harang, (2021) “CATBERT:
Context-Aware Tiny BERT for Detecting Social Engineering
Emails”. KDD ’21 Workshop on AI-enabled Cybersecurity

Analytics, Aug. 14-18, 2021, Virtual Conference. ACM,
New York, NY, USA, 7 pages, https://ai4cyber-kdd.com/
KDD-AISec_files/CatBERT_for_ACM_KDD.pdf.

[24] C. Thapa, J. Tang, A. Abuadbba, Y. Gao, S. Camtepe,
S. Nepal, M. Almashor, and Y. Zheng. (2021) “Evaluation
of Federated Learning in Phishing Email Detection.” arXiv
Preprint, arXiv:2007.13300v3, https://arxiv.org/abs/2007.
13300.

[25] P. Xu, (2021) “A Transformer-based Model to Detect
Phishing URLs.” arXiv Preprint, arXiv:2109.02138, https:
//arxiv.org/abs/2109.02138.

[26] P. Maneriker, J. Stokes, E. Lazo, E. Carutasu, F.
Tajaddodianfar, and A. Gururajan. (2021) “URLTran:
Improving Phishing URL Detection Using Transformers.”
arXiv Preprint, arXiv:2106.05256, https://arxiv.org/abs/2106.
05256.

[27] K. Haynes, H.Shirazi, and I. Ray. (2021) “Lightweight
URL-based phishing detection using natural language
processing transformers for mobile devices.” 18th
International Conference on Mobile Systems and Pervasive
Computing (MobiSPC) 127-134, https://doi.org/10.1016/j.
procs.2021.07.040.

[28] H. Shirazi, B. Bezawada, I. Ray, and C. Anderson. (2019)
“Adversarial sampling attacks against phishing detection.”
Proc. of IFIP Annual Conference on Data and Applications
Security and Privacy, Charleston, SC, USA, https://doi.org/
10.1007/978-3-030-22479-0_5.

[29] H. Shirazi, L. Zweigle, and I. Ray. (2020) “A machine-
learning based unbiased phishing detection approach.” Proc.
of International Conference on Security and Cryptography,
Paris, France.

[30] C.L. Tan. (2018) “Phishing dataset for machine learning:
feature evaluation.” Mendeley Data, V1, http://dx.doi.org/10.
17632/h3cgnj8hft.1.

[31] J. Bergstra, D. Yamins, and D.D. Cox. (2013) “Making
a science of model search: hyperparameter optimization
in hundreds of dimensions for vision architectures.” Proc.
of International Conference on Machine Learning, Atlanta,
Georgia, USA, http://proceedings.mlr.press/v28/bergstra13.
pdf.

[32] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl.
(2011). “Algorithms for hyper-parameter optimization.”
In Advances in Neural Information Processing
Systems 24, 2546-2554, https://papers.nips.cc/paper/
4443-algorithms-for-hyper-parameter-optimization.pdf.

[33] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A.
Moi, . . . , and A.M. Rush. (2020) “Transformers: State-of-the-
Art Natural Language Processing.” Proc. of the Conference
on Empirical Methods in Natural Language Processing:
System Demonstrations, Association for Computational
Linguistics, 38-45, https://www.aclweb.org/anthology/2020.
emnlp-demos.6.

8

https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://10.1109/ACCESS.2019.2920655
http://doi.org/10.1016/j.eswa.2020.113863
https://doi.org/10.1109/IC4ME247184.2019.9036647
https://arxiv.org/abs/1802.03162
https://doi.org/10.1109/ACCESS.2019.2892066
https://doi.org/10.1109/ACCESS.2019.2892066
https://doi.org/10.1109/ICCAIS48893.2020.9096869
https://doi.org/10.1109/ICCAIS48893.2020.9096869
https://doi.org/10.1109/ICCT.2018.8600018
https://arxiv.org/abs/1702.08568v1
https://arxiv.org/abs/1702.08568v1
http://doi.org/10.1016/j.neunet.2020.02.013
http://doi.org/10.1016/j.neunet.2020.02.013
http://doi/org/10.1016/j.comnet.2020.107275
http://doi/org/10.1016/j.comnet.2020.107275
https://ai4cyber-kdd.com/KDD-AISec_files/CatBERT_for_ACM_KDD.pdf
https://ai4cyber-kdd.com/KDD-AISec_files/CatBERT_for_ACM_KDD.pdf
https://arxiv.org/abs/2007.13300
https://arxiv.org/abs/2007.13300
https://arxiv.org/abs/2109.02138
https://arxiv.org/abs/2109.02138
https://arxiv.org/abs/2106.05256
https://arxiv.org/abs/2106.05256
https://doi.org/10.1016/j.procs.2021.07.040
https://doi.org/10.1016/j.procs.2021.07.040
https://doi.org/10.1007/978-3-030-22479-0_5
https://doi.org/10.1007/978-3-030-22479-0_5
http://dx.doi.org/10.17632/h3cgnj8hft.1
http://dx.doi.org/10.17632/h3cgnj8hft.1
http://proceedings.mlr.press/v28/bergstra13.pdf
http://proceedings.mlr.press/v28/bergstra13.pdf
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Introduction
	Related Work
	Content-Based Phishing Detection
	URL-based Phishing Detection

	Approach Overview and Methodology
	Datasets Used in Experiments
	ANN Optimization for Feature-Based Phishing Detection
	Deep Language Processing Models
	BERT and Mobile-BERT
	ELECTRA
	RoBERTa
	Transformer Optimization

	Approach Details
	Task 1: Website URL-Based and HTML-Based Feature Phishing Detection
	Task 2: URL-Based Feature Only Phishing Detection
	Task 3: Transformer Phishing Detection
	Task 4: MobileBERT Time Analysis
	Evaluation Against Related Works

	Conclusions

