
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/360911071

On the Data Privacy, Security, and Risk Postures of IoT Mobile Companion Apps

⋆

Conference Paper · July 2022

CITATIONS

0
READS

178

8 authors, including:

Some of the authors of this publication are also working on these related projects:

Content-based XML transport overlays View project

PhisherCop: Developing an NLP-Based Automated Tool for Phishing Detection View project

Shradha Neupane

Worcester Polytechnic Institute

3 PUBLICATIONS 0 CITATIONS

SEE PROFILE

Faiza Tazi

University of Denver

13 PUBLICATIONS 18 CITATIONS

SEE PROFILE

Upakar Paudel

Colorado State University

4 PUBLICATIONS 1 CITATION

SEE PROFILE

Lorenzo De Carli

The University of Calgary

43 PUBLICATIONS 348 CITATIONS

SEE PROFILE

All content following this page was uploaded by Lorenzo De Carli on 27 June 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/360911071_On_the_Data_Privacy_Security_and_Risk_Postures_of_IoT_Mobile_Companion_Apps?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/360911071_On_the_Data_Privacy_Security_and_Risk_Postures_of_IoT_Mobile_Companion_Apps?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Content-based-XML-transport-overlays?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PhisherCop-Developing-an-NLP-Based-Automated-Tool-for-Phishing-Detection?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shradha-Neupane?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shradha-Neupane?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Worcester-Polytechnic-Institute?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shradha-Neupane?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Faiza-Tazi?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Faiza-Tazi?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Denver?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Faiza-Tazi?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Upakar-Paudel?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Upakar-Paudel?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Colorado_State_University?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Upakar-Paudel?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lorenzo-De-Carli?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lorenzo-De-Carli?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Calgary?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lorenzo-De-Carli?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lorenzo-De-Carli?enrichId=rgreq-cd1b70f681f7cca26fca7c85c2619242-XXX&enrichSource=Y292ZXJQYWdlOzM2MDkxMTA3MTtBUzoxMTcxNTkyNTk1OTQzNDI2QDE2NTYzNDA4NTA1NjU%3D&el=1_x_10&_esc=publicationCoverPdf

On the Data Privacy, Security, and Risk Postures
of IoT Mobile Companion Apps?

Shradha Neupane1, Faiza Tazi2, Upakar Paudel3, Freddy Veloz Baez1, Merzia
Adamjee1, Lorenzo De Carli1, Sanchari Das2, and Indrakshi Ray3

1 Worcester Polytechnic Institute, Worcester MA 01609, USA
{sneupane, fevelozbaez, madamjee, ldecarli}@wpi.edu

2 University of Denver, Denver CO 80208, USA
{Faiza.Tazi, Sanchari.Das}@du.edu

3 Colorado State University, Fort Collins CO 80523
{Upakar.Paudel, Indrakshi.Ray}@colostate.edu

Abstract. Most Internet of Things (IoT) devices provide access through
mobile companion apps to configure, update, and control the devices. In
many cases, these apps handle all user data moving in and out of de-
vices and cloud endpoints. Thus, they constitute a critical component
in the IoT ecosystem from a privacy standpoint, but they have histor-
ically been understudied. In this paper, we perform a latitudinal study
and analysis of a sample of 455 IoT companion apps to understand their
privacy posture using various methods and evaluate whether apps fol-
low best practices. Specifically, we focus on three aspects: data privacy,
security, and risk. Our findings indicate: (i) apps may over-request per-
missions, particularly for tasks that are not related to their functioning;
and (ii) there is widespread use of programming and configuration prac-
tices which may reduce security, with the concerning extreme of two apps
transmitting credentials in unencrypted form.

Keywords: IoT security · IoT privacy · Mobile security

1 Introduction

The Internet of Things (IoT) has become an integral part of our everyday lives,
for convenience, entertainment [32], health monitoring [23], online education [46],
and other daily activities [62]. However, with increasing interactions of IoT de-
vices with users through their companion mobile apps, inadequate privacy and
security has caused several breaches [24, 15]. Prior research on the privacy and
security of IoT devices mostly focuses on the devices themselves. Thus, it leaves
out a crucial component: the mobile apps through which users configure and
control IoT devices. Such IoT companion apps have visibility on the information
flowing through devices (e.g., camera streams, network details) [41, 58], and re-
tain their potentially sensitive operations (e.g., smart locks, children toys) [16,
? Shradha Neupane and Faiza Tazi contributed equally as first authors. This work was
supported in part by funding from NSF under Award Number CNS 1822118, NIST,
ARL, Statnett, AMI, Cyber Risk Research, NewPush, State of Colorado Cyberse-
curity Center, and a gift from Google.

2 Neupane, Tazi et al.

59]. Thus, from a privacy, security, and risk standpoint they are a critical gate-
way; programming and design bugs, and deliberate leaking of personal data, can
have a critical negative impact on users.

Our goal is to generate an understanding of privacy-related behavior and
issues in IoT companion apps. We explicitly design our effort as a latitudinal
study, i.e., we aim at carrying a selected number of privacy-related analyses on a
large number of apps. We limit ourselves to analyzing companion apps in isola-
tion, because analyzing each app as it interacts with its specific IoT device is not
practical for a large scale study. We collect apps (N=455) from the Google Play
Store [7] using a hybrid method that combines automatic scraping with manual
review. We inspect the collected apps using a number of relevant analyses lever-
aging, where possible, existing industry-standard tools. The tools measure app
posture in terms of three different aspects: data privacy, security (e.g. absence
of privacy-sensitive vulnerability), and risk (i.e., app trustworthiness). The data
privacy and security analyses focus on issues that can be specifically identified;
whereas the risk analysis attempts to estimate the potential for latent issues that
cannot yet be discovered.

We aim to answer the following research questions with regards to IoT apps:
RQ1: How do companion apps fare with respect to the measured security- and
privacy-related aspects? Are there significant general concerns broadly affecting
companion apps? Furthermore, the use of heterogeneous analyses covering mul-
tiple app aspects also allows us to answer an additional important empirical
question: RQ2: Is there evidence of positive or negative correlation between met-
rics measuring different aspects of app privacy (e.g., sensitive permissions and
presence of vulnerabilities)?

Our analysis finds that many apps over-request permissions that appear to be
unrelated to their core functionality. Moreover, there are many apps which deploy
insecure programming or configuration practices, with the extreme of two apps
transmitting user credentials in cleartext. Our work makes the following
contributions: (i) We propose a threat model informed by domain expertise,
and derive broad analysis categories from the model. (ii) We propose a method
to identify and scrape IoT companion apps from the Google Play Store. (iii) We
define methods to quantitatively and reproducibly assess aspects of companion
app privacy along the dimension of data privacy, security, and risk as it correlates
with the privacy and security of the IoT device itself. (iv) We perform a large-
scale measurement study of the properties4. (v) We investigate whether privacy
aspects correlate among multiple measured dimensions.

2 Threat Model

We adopt a holistic definition of IoT apps:An IoT device is one which senses/actuates
the physical world and is able to exchange sensing/actuation data with another
networked node [47, 33]. In practice, this style of definition is typically and im-
plicitly extended to exclude non-embedded computing devices such as laptops
4 Our raw metrics are anonymously available at https://osf.io/gf7cs/?view_only=
c701039702f648849e32ecd4c2e1fd54.

Privacy, Security, and Risk Postures of IoT Apps 3

User/ household
IoT device Mobile app Cloud storage

Network-based
attacker

Malicious
endpoint

Entity Process Storage Data flow
(malicious)

Possible attacker
position

1

1

Data privacy issue: leak unexpected data to legitimate
endpoint (manufacturer cloud backend)

2

2 Security issue: allow local or remote attacker to intercept or
obtain private data

3 Risk issue: leak data to unexpected (malicious) endpoints

3

Fig. 1: IoT ecosystem and threat model of IoT companion apps

and smartphones; we follow the same approach in our work. We define a com-
panion app as follows: a companion app is an app which connects to an IoT
device over a network, to rely actuation commands or receive sensing data.

Our ecosystem consists of a user, an IoT device, a companion IoT app, and
the cloud backend. Our model is adapted from the LINNDUN threat modeling
system [66]: in Figure 1 the system is depicted as a dataflow diagram, where
nodes can be entities, processes, and data stores. Flows of sensitive user data
are represented as arrows. We also represent attacker-related entities. We make
some simplifying assumptions. First, we define as “sensitive user data” any data
existing on the user phone, for which the user has a reasonable expectation of
privacy. Second, we assume the user is in agreement with IoT device data being
transmitted/received to/from the IoT device and a cloud backend managed by
the device manufacture that is needed for its core functionality. Furthermore,
we define as privacy leak any companion app-mediated unwanted access to sen-
sitive user data, where “unwanted” may mean: (i) the app accesses/transmits
data which are not necessary to carry out its function (data privacy issue); (ii)
app is vulnerable/misconfigured allowing an attacker to access data (security is-
sue); (iii) app transmit data to unexpected endpoints and/or perform malicious
actions (risk issue).

3 Data Collection and Analysis
We adapt the data collection methodology proposed by Wang et al. [64] and
follow up with manual removal of all non-IoT apps. The procedure includes:

[Step 1: Manual Search]We manually downloaded IoT apps from the Google
Play Store based on definition of IoT apps (ref. Section 1). This entailed
searching for apps used in the context of smart home/IoT. This forms our
Seed App Set.

[Step 2: App Scraping] We scraped more related IoT apps, starting from
our seed set and following the “Similar Apps” suggestions presented by the
Play Store. We used play-scraper [44] to collect app names and descriptions.

4 Neupane, Tazi et al.

Category Permissions
Network INTERNET, ACCESS_NETWORK_STATE, CHANGE_NETWORK_STATE,

ACCESS_WIFI_STATE, CHANGE_WIFI_STATE,
CHANGE_WIFI_MULTICAST_STATE

Content WRITE_MEDIA_STORAGE, READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE, MANAGE_EXTERNAL_STORAGE,
MANAGE_MEDIA, MOUNT_FORMAT_FILESYSTEMS

Location ACCESS_FINE_LOCATION, ACCESS_COARSE_LOCATION
ACCESS_BACKGROUND_LOCATION, ACCESS_MEDIA_LOCATION
ACCESS_LOCATION_EXTRA_COMMANDS

Device Id READ_PHONE_STATE, READ_BASIC_PHONE_STATE
READ_PRECISE_PHONE_STATE, MODIFY_PHONE_STATE

Contact WRITE_CONTACTS, ACCOUNT_MANAGER, READ_CONTACTS
Telephony CALL_PHONE, PROCESS_OUTGOING_CALLS, READ_SMS, SEND_SMS
Services READ_PHONE_NUMBERS, USE_SIP, MANAGE_ONGOING_CALLS

CALL_PRIVILEGED, ANSWER_PHONE_CALLS, WRITE_CALL_LOG
READ_CALL_LOG, RECEIVE_SMS

Calendar WRITE_CALENDAR, READ_CALENDAR
Table 1: Details of privacy categories and their associated permissions.

[Step 3: Keyword-based Filtering] We found a high number of false posi-
tives (i.e. apps that do not match our definition of IoT companion apps) in
Step 2. Therefore, we first removed apps matching specific keywords (e.g.,
currency, compiler, etc.). We generated the set of keywords empirically, by
identifying keywords highly correlated with false positives.

[Step 4: Naïve-Bayes Classification] We refined the candidate set by using
machine learning to classify IoT and non-IoT apps. We first attempted to
apply the BERT algorithm [26] to leverage context for better classification
and Logistic Regression Model in conjunction with the TF-IDF vectorizer.
However, these algorithms performed poorly on our dataset. Using a Naïve-
Bayes classifier lead to better, but still suboptimal accuracy (64.6%) on a
small set of manually labeled data.

[Step 5: Manual Filtering]Wemanually reviewed all apps classified by Naïve
Bayes as IoT-related and we retained only those which unambiguously match
our definition of companion app (given in Section 2).

Data collection results:We downloaded the app packages (APKs) using Play-
storeDownloader [11]. Our initial set of 2000 scraped apps was reduced to 1596
by keyword-based and Naïve Bayes filtering (a 20% reduction). Manual inspec-
tion determined that only 484 (30%) were matching our definition and thus
relevant to our analysis. We retained only 455 APKS as the remaining apps
could not be downloaded, or were in a format incompatible with our tooling.

4 Data Privacy Posture
4.1 Methods
Our privacy evaluation is an extension of Kang et al.’s work on privacy meter
which helps visualize privacy risks [38]. The app manifest provides detailed in-

Privacy, Security, and Risk Postures of IoT Apps 5

Category Tool
1. Requests for privacy-sensitive permissions Manifest permission analysis
2. Evidence of permission-related data leaks FlowDroid
3. Analysis of privacy policies Polisis

Table 2: Data privacy categories relevant to our analysis, and respective tools

formation [60, 53] including measurements the app does to obtain user data,
i.e. the permissions required, details, and how it is collected, thus analysis of
the app manifests is critical [52, 35]. The first relevant issue is whether an app
exhibits requests for privacy-sensitive permissions. However, the presence of sen-
sitive permission does not imply data leaks; thus we also consider evidence of
permission-related data leaks. The app privacy policy, when available, also pro-
vides important context. Thus we perform an analysis of privacy policy.

4.2 Tools and Analyses
Mapping between analysis categories and tools is summarized in Table 2. Details
of individual analyses are provided below.

Manifest Permission Analysis (Cat. 1). We identify the privacy-sensitive
permissions requested by each app as classified by Google [10]. These permis-
sions provide access to resources that manage privacy sensitive data such as
personally identifiable information, location data, contact books and so on [19].
Thereafter, we identify the user data categories accessed by the mobile apps. This
classification is necessary as these categories can reveal sensitive user and device
information regardless of the app type. The permission categories included: Con-
tacts, Content, Location, Calendar, Network, Device ID, and Phone State [63].
We then map privacy-sensitive permissions to these categories according to the
type of data to which each permission grants access.

From the declaration of the app permissions, we calculate privacy scores for
the categories using Sc = pc/

∑
i pi where Sc is the score for category c, pc is the

number of permission pertaining to c, and
∑

i pi is the sum of all permissions per-
taining to c. Each category can request several permission accesses as mentioned
in Table 1. For each permission, we have considered a binary 0 or 1 depending
on whether the app requests the permission. Thereafter, we follow a hierarchi-
cal permission model. In the case of higher privilege access which encompasses
lower privileges, we considered the higher privileges to avoid double counting.
For example, Full Network Access encompasses all the other network-related
permissions. Thus, for our privacy score calculations, if an app only requests
this permission, it will get a score Snetwork = 1. Similarly, if an app is requesting
fine-grained location, it is considered as plocation = 2 since coarse-grained loca-
tion data is covered by fine-grained. Furthermore, permission to write storage
implies permission to read. Thus, write storage is considered as two permissions.
This also applies to read/write contacts, call logs, and calendar events.

FlowDroid (Cat. 2). We use FlowDroid to analyze each app’s privacy leaks
and map these leaks to permissions that are necessary for the app to have access
to that type of data. FlowDroid investigates data flows between sources (loca-
tions where sensitive information could be created) and sinks (locations where

6 Neupane, Tazi et al.

Perms Mean Min Max
Network 0.75 0 1

Content 0.26 0.5 0

Location 0.44 0 1

Device Id 0.08 0 0.5

Contact 0.12 0 1

Telephony Services 0.01 0 0.75

Calendar 0.01 0 1

Table 3: Mean, min and max for each privacy category

such information could leave the app). Sources and sinks are specified as Java
function signatures. FlowDroid parses the app binaries and produces an analy-
sis of the application call graph as the output, including the existence of paths
from source to sink. These represent situations where leakage of sensitive data
is possible. In this analysis, we only consider the sources, since leaking personal
data is a breach of privacy, no matter the destination.

Analysis of Privacy Policy (Cat. 3) We conduct automated analysis of app
privacy policies using the Polisis framework [30]. It breaks down the privacy
policy into self-contained, semantically coherent segments and passes each into a
set of neural network classifiers to designate labels depicting the privacy practices
described in the policy, the labels include 10 high-level and 122 fine-grained
classes. These classifiers are trained on the OPP-115 dataset by Wilson et al. [65].

Concretely, we collect policies linked by each app and pass them to Polisis.
The output is a classification result by category level for the segment classifier
and attribute levels where applicable for each segment. In this analysis we were
mainly interested by the following classification labels at the category level for
segment classification: First Party Collection, Third Party Sharing, Access, Edit,
Delete. As for the attributes we were interested in: personal-information-type,
third-party-entity, access-type, action-first-party and identifiability.
Limitations: We considered Android-defined permissions for our permission
analysis. Although custom permissions are prevalent in our corpus, we did not
take into consideration these permissions—developer-defined permissions that
allow them to set restrictions and share resources and capabilities with other
apps—due to tool limitations. Li et al. acknowledge that the use of custom per-
missions is commonplace, and note that malicious applications try to exploit the
flaws of custom permissions by getting dangerous system permissions without
user consent and thus gaining illegal access to platform resources [43]. We were
unable to extract the application manifest for 3 apps. The privacy policy anal-
ysis was carried out for 402 apps (the remaining apps had non-English policies
unsupported by tooling, or did not provide a policy.)

4.3 Results

Manifest Permissions Analysis. 129 of the 448 apps got a network permis-
sion score of 1, which means that these apps either requested the whole set of
network permissions or opted to request the highest privilege permissions. A high

Privacy, Security, and Risk Postures of IoT Apps 7

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

50

100

150

200

250

Ap

ps

(a) Location privacy score

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

50

100

150

200

250

300

Ap

ps

(b) Contact privacy score

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

50

100

150

200

250

300

350

Ap

ps

(c) Content privacy score

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

100

200

300

400

Ap

ps

(d) Calendar privacy score

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

20

40

60

80

100

120

Ap

ps

(e) Network privacy score

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

50

100

150

200

250

300

Ap

ps

(f) Device Id privacy score

0.0 0.2 0.4 0.6 0.8 1.0
Value

0

50

100

150

200

250

300

350

400

Ap

ps

(g) Phone privacy score
Fig. 2: Individual distributions of privacy scores for the IoT applications

score is expected as companion apps need to be linked with a device through the
network. The mean network permission score was 0.75. The mean location per-
mission score was the second-highest (0.44). The most requested permissions for
location are ACCESS_COARSE_LOCATION and ACCESS_MEDIA_LOCATION
which allows apps to access locations saved within the user’s media.

The content permission score mean was not as high (0.26), with the majority
of applications (353) requesting the permission to write to external storage. Only
92 out of 448 apps did not request any content permission. The rest of the
categories had lower mean scores. It should be mentioned, however, that none of
those permission categories is necessary to implement the core functionality of a
companion app. Figures 2a-g detail the privacy score for each category. Table 4
presents Spearman’s rank correlation coefficient rs values between each pair of
privacy categories (for all reported values, p < 0.01). We use Spearman as score
distributions are non-normal. The most relevant finding is that a number of
categories exhibit weak (> 0.3) correlation with each other.

FlowDroid Permissions Analysis. FlowDroid detected leaks in 315 (69.23%)
apps. 96 applications presented privacy leaks that were caused by custom per-
missions, not included in this analysis. 219 applications presented leaks caused
by a set of 8 permissions: ACCESS_FINE_LOCATION, ACCESS_WIFI_STATE,
READ_PRIVILEGED_PHONE_ STATE, RECORD_AUDIO, READ_SMS, READ_

8 Neupane, Tazi et al.

Net Con Loc Did Ctc TeS Cal
Net 1.00 - - - - - -
Con 0.325 1.00 - - - - -
Loc 0.388 0.296 1.00 - - - -
Did 0.119 0.216 0.182 1.00 - - -
Ctc 0.195 0.195 0.222 0.293 1.00 - -
TeS 0.065 0.062 0.114 0.305 0.374 1.00 -
Cal -0.062 -0.002 0.0 0.090 0.195 0.310 1.00

Table 4: rs Between privacy categories (Loc = Location; Ctc = Contacts; Con
= Content; Cal = Calendar; DId = Device Id; TeS = Telephony Service.)

PHONE_STATE, READ_PHONE_NUMBERS, BLUETOOTH_CONNECT. Six of
these permissions were identified in privacy categories from Table 1.

The permission which provided data for the most number of leaks was AC-
CESS_FINE_LOCATION, with 214 apps leaking information related to fine-
grained geographical location. Note, only 20 apps declared this specific permis-
sion in their manifest. A less significant issue concerned 20 apps leaking privi-
leged phone state data. Moreover, 4 apps leaked audio recording data. Similarly,
SMS, phone numbers, and phone state data were leaked by 3 apps each. These
results are shown in Figure 3.

Privacy Policy Analysis: Polisis. We analyzed personal information type
labels (as categorized by Polisis) declared in app privacy policies. Polisis uses
the following 15 personal information type labels: Computer information (CI),
Contact (CON), Cookies and tracking elements (C&TE), Demographic (DEM),
Financial (FIN), Generic personal information (GPI), Health (HLT), IP address
and device IDs (IP&ID), Location (LOC), Personal identifier (PI), Social media
data (SMD), Survey data (SURV), User online activities (UOA), User profile
(UP) and Other Data (OD). Polisis predicts attributes’ labels with an average
precision of 0.84, and only considered a prediction of over 0.5. The distribution
of number of labels per app is presented in Figure 4a. The maximum number of
labels detected in a privacy policy was 14 which was observed in two apps, and
the average number of labels per privacy policy was 6.76. The Other Data label
was the most recurrent label, predicted in 277 privacy policies. The least frequent
label was Location which was predicted in 41 of the policies. 28 privacy policies
stated that they did not collect personal information on users (Figure 4b).

Take-aways. Significant number of apps request permissions (e.g., phone state)
not directly related to their typical functions; although the privacy score for
such categories is low. Many apps leaked information requested through AC-
CESS_FINE_LOCATION, without declaring this permission. Many app providers
did not describe all the types of collected data in their privacy policy.

Privacy, Security, and Risk Postures of IoT Apps 9

AC
CE

SS
_F

IN
E_

LO
CA

TI
ON

AC
CE

SS
_W

IF
I_S

TA
TE

RE
AD

_P
RI

VI
LE

GE
D_

PH
ON

E_
ST

AT
E

RE
CO

RD
_A

UD
IO

RE
AD

_S
M

S

RE
AD

_P
HO

NE
_N

UM
BE

RS

RE
AD

_P
HO

NE
_S

TA
TE

BL
UE

TO
OT

H_
CO

NN
EC

T

Permissions

0

25

50

75

100

125

150

175

200

Ap

ps

Fig. 3: Permissions responsible for the data leaks found through FlowDroid

0 2 4 6 8 10 12 14
Data Collection Labels Detected

0

10

20

30

40

Ap

ps

(a) Frequency of labels detected.

CI
CON

C&TE DEM FIN GPI HLT
IP&

ID LO
C PID SM

D
SU

RV UOA UP OD
0

50

100

150

200

250

Ap

ps

(b) No. of label types in each app.
Fig. 4: Personal Information Type Labels Statistics

5 Security Posture

5.1 Methods

Many app security analysis techniques exist (e.g., [39, 57, 3, 2]). For an technique
to be used in our analysis, we require the following: tooling must be (i) available;
(ii) not abandoned (we used a fixed threshold of two years w/o updates to
determine abandonment); and (iii) executable on a modern machine/OS. We
restrict our search to techniques measuring one of three different categories. The
first is the presence of known vulnerabilities, as vulnerable software is at higher
risk of facilitating accidental or attacker-driven information leaks. However, an
app may also suffer from latent, undiscovered security issues that cannot be
directly fingerprinted. Thus, we also measure evidence of lack of maintenance,
as lack of updates may cause the presence of such latent issues [48]. The third
security category is lack of in-transit data protection. Most apps encrypts in-
transit data with Transport Layer Security (TLS). A misconfigured TLS stack,
or lack of TLS, may result in an attacker being able to read in-transit user data.

5.2 Tools and Analyses

We decided to perform the bulk of the analysis using the Mobile Security Frame-
work (MobSF) [3] which is a mature Open-Source pen-testing tool for Android.

10 Neupane, Tazi et al.

Category Tool
1. Presence of known vulnerabilities MobSF static analysis
2. Evidence of lack of maintenance Days since update
3. Lack of in-transit data protection MobSF static analysis

MobSF dynamic analysis
Manual inspection

Table 5: Security categories relevant to our analysis

It takes an APK as input and produces a parseable vulnerability report as out-
put. We also implemented a measurement of software abandonment (category
2 - Evidence of lack of maintenance). Table 5 summarizes tools used for each
category. We discuss individual analyses below.

MobSF CVSS Score (Cat. 1). We use MobSF to statically fingerprint com-
mon, generic security-adverse patterns (e.g., logging sensitive information in
plain text). MobSF further assigns a severity score between 0 and 10 to each
issue, using the CVSS scoring system [1]. The tool also outputs the average
CVSS scores across all detected issues. MobSF also generates information about
the high-level category associated with each problem, according to CWE (Com-
mon Weakness Enumeration) categorization [4].

Days Since Update (Cat. 2). Modern apps tend to make use of many third-
party libraries. Every software needs to be updated and patched regularly as
new vulnerabilities get discovered. We use Days Since Last Released Update
(scraped using the play-scraper Python package) as an analysis to investigate
abandonment issues. This is consistent with previous work [28], which has used
“failure to release” as a proxy symptom of abandonment for software projects.

Transport Layer Misconfigurations (Cat. 3). HTTPS (Secure HTTP) is used
for encrypted and secure transfer of data. HTTPS uses the TLS (Transport-Layer
Security) standard to provide this functionality. We use MobSF static analyzer
to identify app misconfigurations which may allow data to be transmitted in not
properly encrypted form. Even if TLS is configured correctly, the use of invalid
TLS certificates may still create risks. Thus we also use MobSF’s static analyzer
to identify invalid/expired TLS certificates.

Transport Layer Secrecy Issues (Cat. 3). We complement static TLS anal-
ysis with dynamic analysis of app-generated network connections. We perform
four MobSF-driven tests: TLS misconfiguration, TLS Pinning/Certificate trans-
parency, TLS Pinning/Certificate transparency Bypass, and Cleartext Traffic.
The TLS misconfiguration test involved enabling an HTTPS Man-in-the-middle
Proxy and removing the root CA. It uncovers insecure configurations allowing
HTTPS connections bypassing certificate errors or SSL/TLS errors in WebViews.
The TLS certificate transparency bypasses test attempts to bypass the certifi-
cate or public key pinning and certificate transparency controls. The ClearText
Traffic test inspects whether an app exchanges any non-TLS-encrypted traffic.

Manual User Flow (Cat. 3). We manually performed the following opera-
tions: user creation, password recovery, login, and single sign-on (if allowed by
the manufacturer), while recording traffic generated by the app. Subsequently,
we inspected the traffic for issues. We limited this test to a small set of apps

Privacy, Security, and Risk Postures of IoT Apps 11

0 1 2 3 4 5 6 7
cvss

0

50

100

150

200

250

Fr
eq

ue
nc

y

(a) Distribution of CVSS scores

0 500 1000 1500 2000
dsu

0

50

100

150

200

250

Fr
eq

ue
nc

y

(b) Days since update
Fig. 5: Security Metrics

that were found to transmit unencrypted data by other tests. Inspection involved
determining the nature and sensitivity of such unencrypted data if any.
Limitations: The MobSF static analyzer failed on 3 apps. 20% of apps we run
through the Transport Layer Secrecy Issues analysis crashed due to incompat-
ibility with test environment (Android Studio) and other issues. Manual User
Flow requires manual analysis of app network traces, which is complex and time-
consuming. Due to the combination of these factors, we limited the latter two
analyses to a smaller set of 15 apps.

5.3 Results

Presence of Known Vulnerabilities. Measurements of the aggregate MobSF
CVSS score resulted in an average score of 6.45, with a minimum of 0 and a
maximum of 7.5. The distribution is presented in Figure 5a. Scores exhibits a
fairly concentrated distribution, with only 5 apps showing a score of 0 and 417
having a score of 4.0 to 6.9, which is considered medium severity according to
the CVSS qualitative severity scale [1]. While the data may appear to be close
to normally distributed, it fails the Shapiro-Wilk normality test (W = 0.37, p =
1.68e−36). Upon further analysis, we determined that MobSF captures several
discouraged but common programming practices; the fact that a small set of
issues recurs across a large number of apps causes the consolidation of scores
observed in the data.

Table 6 lists the top-10 CWEs associated with the vulnerabilities in the
apps. Several common CWEs identify behaviors that might pose relatively minor
threats. CWE-532 was found in almost every application because they were
creating files in the system or logging operation results. Although this practice is
discouraged, not all exposed information may be critical, and reading it requires
physical access to the device. Other common CWE such as CWE-312, -330, and
-327 are concerning as they indicate deviation from best data secrecy practices.

Evidence of Lack of Maintenance The average number of days since an
update is 237 (min: 0; max: 2462). The distribution, reported in Figure 5b,
is concentrated around low values, which implies most companion apps are fre-
quently updated (more than 238 received an update within the last 100 days).

12 Neupane, Tazi et al.

CWE Name Apps
CWE-532 Insertion of Sensitive Information into Log File 445

CWE-276 Incorrect Default Permissions 411

CWE-312 Cleartext Storage of Sensitive Information 403

CWE-330 Use of Insufficiently Random Values 390

CWE-327 Use of a Broken or Risky Cryptographic Algorithm 381

CWE-200 Information Exposure 349

CWE-89 Improper Neutralization of Special Elements used in an
SQL Command (’SQL Injection’)

347

CWE-649 Reliance on Obfuscation or Encryption of Security-
Relevant Inputs without Integrity Checking

208

CWE-749 Exposed Dangerous Method or Function 185

CWE-295 Improper Certificate Validation 123

Table 6: Most common CWEs found by MobSF Issue Analysis

Description Apps
Base cfg is insecurely configured to permit clear text traffic to all domains. 99

Domain cfg is insecurely configured to permit clear text traffic to these domains. 71

Base cfg is configured to trust system certificates. 65

Base cfg is configured to trust user installed certificates. 16

Base cfg is configured to bypass certificate pinning. 12

Domain cfg is configured to trust system certificates. 5

Domain cfg is configured to trust user installed certificates. 2

Table 7: Network security configuration issues detected across the app dataset

This metric is however uncorrelated to CVSS score (as discussed in Section 7.1),
so a high frequency of updates does not imply absence of vulnerabilities.

Lack of In-transit Data Protection. Transport-layer misconfigurations:
Table 7 summarizes network-related vulnerabilities in an app’s network security
configuration, which centralizes network security settings in a standardized file.
Enforcing directives in the configuration is up to individual network libraries, and
indeed not all libraries respect the configuration [67]. The top-two issues allow
unencrypted communications to all or some domains. The others generally vio-
late various best practices concerning the choice of TLS certificates that should
be trusted. We also measured the use of invalid/expired TLS certificates, which
appears to be quite widespread: it affects 96 out of 452 (21.2%) applications.
Transport-layer secrecy issues: For this dynamic analysis, we selected 15
apps for which other analyses had identified potentially concerning issues based
on high risk index values given by RiskInDroid (detailed in Section 6.2). The
results of the dynamic TLS tests on the 15 apps are summarized in Table 8. While
the app sample is too small to extract general conclusions, this test identified
significant TLS deployment issues. Note that, differently from our static analysis
results reported in the “Transport layer misconfigurations” test—which represent
configuration issues potentially leading to security problems—the dynamic test
identifies issues concerning the actual network traffic generated by apps.

Privacy, Security, and Risk Postures of IoT Apps 13

TLS Test Percent passing
Cleartext traffic Test 60%
TLS Misconfiguration Test 46.7%
TLS Pinning/Cert. Transparency Bypass Test 73.3%
TLS Pinning/Cert. Transparency Test 53.3%

Table 8: Dynamic analysis results for the selected 15 apps

Manual user flow analysis: In order to further investigate the results above,
we manually analyzed app-generated traffic. This analysis revealed that, in prac-
tice, most apps were using TLS to send critical information and only used cleart-
ext traffic to access public data. Two apps, however, had concerning behavior: (i)
XVRView (com.xvrview) is an app developed by 杭州韬视 that allows users to
monitor home cameras from their cell phones. The app has > 100,000 downloads
and receives active support from its developers, as the last update took place in
February 2022. However, it failed every TLS test except “TLS Pining/Certificate
Transparency Bypass”. Our manual analysis found that all the user credentials
are sent in clear text, which is an extremely risky practice. An on-path attacker
could obtain credentials and get direct access to users’ home cameras. (ii) Vss
Mobile, by ZenoTech, has > 500,000 downloads. It is a remote monitoring client
that allows users to view videos over the network. At the time of testing, the ap-
plication had not been updated in over a year . Manual traffic analysis revealed
that the app transmits login credentials over unencrypted TCP connections.
This is a critical issue that could breach data privacy and allow snooping on
user data. We disclosed the issues to the app maintainers.

Take-aways. Results show that many apps are plagued by noncritical but con-
cerning poor programming patterns (e.g., logging sensitive information in clear-
text); and configuration issues affecting secrecy of in-transit data (e.g., use of
expired certificates). An in-depth dive into apps with particularly concerning
flags revealed isolated cases of sensitive credentials being sent in cleartext.

6 Risk Posture

6.1 Methods

By risk posture, we refer to the likelihood that an app may purposely mishan-
dle user data. There exist a variety of risk profiling techniques [50, 55, 37, 36,
17, 61]. For selection, we used the same criterion discussed in Section 5. Most
techniques have the goal of assessing the similarity of an app to given malware;
therefore, we further used published results to exclude older techniques that are
generally outperformed by more recent ones. Similarity to known malware is an
indirect measure, as an app could perform malicious operations which do not
resemble known patterns. Thus we also include a limited but direct measure
of risk, presence of malicious URLs, which considers whether an app contains
URLs associated with known malicious domains. Tool selection is summarized
in Table 9 and discussed below.

14 Neupane, Tazi et al.

Category Tool
1. Similarity to known malware RiskInDroid score
2. Presence of malicious URLs URL analysis pipeline
Table 9: Risk categories relevant to our analysis

10 20 30 40 50 60 70
rid

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Fig. 6: RiskInDroid score

6.2 Tools and Analyses
RiskInDroid (Cat. 1) distinguishes risky applications from non-risky ones based
on permissions, using machine learning-based classifiers (multiple techniques are
supported, including SVM, Multinomial Naive Bayes, Grading Boosting, and
Logistic Regression). The tool produces a risk index value (RIV) as output; RIV
estimates the similarity of the permission set to those commonly seen in malware.
Higher RIVs correspond to risky applications and possibly malware. The value
of RIVs ranges from 0 to 100, where values above 75 suggests potential malware.
URL Analysis (Cat. 2) uses MobSF static analyzer to extract URLs within
an app APK. It then uses three different blocklists [6, 13, 12]) to identify risky
and/or malicious URLs.
Limitations: RiskInDroid failed on 9 out of 455 apps, thus the results are
for 446 apps only. The blocklists we used for URL analysis will flag an entire
CDN/content provider hostname (e.g., gw.alicdn.com) when one of their cus-
tomers performs malicious actions, thus resulting in potential false positives. We
manage this issue by manually post-processing the URL analysis results.

6.3 Results
Similarity to Known Malware. The minimum RiskInDroid score in our apps
was 4.9 and the maximum was 75.59. Only 3 apps have a RIV higher than
75: XVRView, blurams, and Verisure Cameras. According to their descriptions,
all three apps are used to remotely stream home smart cameras. A cursory
app review did not find evidence of malicious behavior, so it is simply possible
that the combination of permissions required by this class of apps is close to
RiskInDroid’s internal malware model. We remark that in our security analysis
(Section 5.3) we also found that XVRView transmits credentials in cleartext.

Presence of Malicious URLs. Overall, we extracted and analyzed 5722
URLs from our corpus of apps. 14 hostnames appear on security blocklists,

Privacy, Security, and Risk Postures of IoT Apps 15

and 3 belong to a domain which suffered a recent breach. However, upon man-
ual inspection we determined that all hostnames either belonged to CDN plat-
forms/backends (e.g., ytimg.com), appeared related to the device manufacturers
(e.g., xiaoyi.pl), or were popular content hosting platforms (e.g., imgur.com). In
all these cases, it is impossible, without further knowledge, to unambiguously
determine that the URL is malicious. We note, however, that 345 apps (76.3%)
were found to use backend services provided by firebase.io, which has been in
the past the subject of large-scale data leaks [5].

Take-aways. Most apps do not exhibit characteristics commonly associated
with malicious software and data misuse. This may be the result of selection bias:
as the Play Store screens uploaded apps for malware, there may exist malicious
apps which however do not exhibit easily detectable malware behavior. Reliable
mobile malware detection is a complex task in itself, and orthogonal to our work.

7 Discussion

Our main research question (ref. Section 1) was: How do companion apps fare
in respect to the measured privacy-related aspects? Are there significant general
concerns broadly affecting companion apps? Overall, the privacy picture painted
by our analysis is not critical, but certainly sub-optimal. While no app was
found to carry overtly malicious behavior (Section 6), apps routinely request
permissions that do not appear necessary (Section 4). Poor app programming
and configuration practices, likely to increase the risk of compromise and data
leaks, were also common (Section 5).

Given these considerations, we believe it would be important for users evalu-
ating the purchase of a device and related app, to have access to understandable
insights about the app privacy posture. Such information would enable users
to prefer security-robust apps, which in turn may incentivize manufacturers to
improve their privacy practices.

In other communities, visibility into the security of software packages via
online aggregators is rapidly becoming popular. Examples from the Open Source
Software community include the OpenSSF Security Metrics project [9] and the
LFX insights project [8]. We believe a similar resource focused on IoT app privacy
would be beneficial to the Android IoT user community.

7.1 Cross-Dimension Analysis

We now evaluate the relationships between the results of different analyses (RQ2:
Is there evidence of positive or negative correlation between metrics measuring
different aspects of app privacy? in Section 1.) We only consider measures that
result in a non-boolean numerical score: Privacy Score (Section 4.3, averaged
across all categories), CVSS score (Section 5.3), Days since update (Section 5.3),
RiskInDroid score (Section 6.3). We additionally generate a score from the Flow-
Droid analysis of Section 4, by counting all paths between FlowDroid sources
and sinks. As the value distribution of many measures deviates from normal, we

16 Neupane, Tazi et al.

Priv FlowDroid CVSS DSU RID
Priv 1.00 - - - -

FlowDroid 0.147 1.00 - - -
CVSS 0.003 0.075 1.00 - -
DSU -.197 0.028 0.049 1.00 -
RID 0.149 0.027 0.104 0.007 1.00

Table 10: Spearman’s rank correlation coefficients between measured character-
istics (“Priv” stands for “Average Privacy Score”; “DSU” for “Days Since Update”;
“RID” for “RiskInDroid Score”)

used non-parametric Spearman’s rank correlation (rs). According to accepted
practice [31], we interpret rs values < 0.3 as representing no correlation.
Results: The correlation matrix is shown in Table 10; no significant correlation
is evidenced between any pair of measures. Based on our results, thus privacy
issues do not appear to propagate along with multiple aspects: the pos-
ture of each app according to one aspect is uncorrelated to the same along with
other aspects. For the same reason, we did not find evidence of tradeoffs
between app quality in different aspects.

7.2 State of Measuring Tools

FlowDroid [18], MobSF [3], and RiskInDroid [50] are mature and well-maintained
tools, and we found them easy to integrate into an automated analysis work-
flow. MobSF and FlowDroid are backed by robust developer communities; while
FlowDroid is backed by a mobile security startup. Polisis [30] works on textual
privacy policies and we did not run into significant issues while using it. We
considered Axplorer [21], Arcade [14] and IccTA [42] for computing app per-
missions without relying on the manifest. Unfortunately, none worked and we
implemented our manifest analysis. We considered CryptoGuard [57] and Cry-
Logger [56] for detecting incorrect use of crypto primitives. We found them to
be less applicable to a broad set of apps. Both exhibited a high failure rate.

8 Related Work

Related Work on Metrics: Kang et al [38] calculate Android app privacy
scores based on a list of 30 permissions commonly used by malware. Biswas et
al. [22] developed a method to measure privacy across Location, Content, and
Contacts. In our paper, we extended and combined these two methods to calcu-
late privacy for different categories. Recently, Babun et al. [20] proposed IoT-
Watch, a methodology for matching user privacy preferences to app-transmitted
data. Integrating IoTWatch in our work is an interesting future direction.

Jansen [34] highlighted limitations of popular security metrics, such as the
reliance on human judgment and inherent subjectivity. Similarly, Krutz et al.
found that user ratings weakly correlate with security [40]. Consequently, we
mostly focus on security analyses rooted in objective properties of each app (e.g.,

Privacy, Security, and Risk Postures of IoT Apps 17

score of CVSS issues). RiskMon [37] assesses the risk incurred by app sensitive
operations relative to user-provided expectations. As we require an assessment
to be automated, this approach is outside the scope of our work. WHYPER [54]
flags unexplained app permissions in app descriptions. We do not include this
approach as lack of explanation, while suspicious, does not represent a security
issue per se. Peng et al. [55] proposed probabilistic generative models to attribute
a risk score to Android apps based on the combination of permissions requested.
Later work [50] has shown that ML-driven analysis of permission sets leads to
superior results; therefore we prefer the latter approach.
Related Work on IoT-Based Studies: Liu et al. [45] defined the notion of
app-in-the-middle IoTs, which illustrates the increasingly popular setup where
constrained IoT devices rely on mobile apps for connectivity. They then proposed
a formalization of the security of such setups. Ding and Hu [27] proposed a
framework for identifying security-relevant hidden integration between IoT apps.

Wang et al. [64] and Mauro Junior et al. [49] analyzed mobile companion
apps [64] to infer vulnerabilities in their devices and backends. Both works focus
mainly on devices and not apps. Chatzoglou et al. [25] performed an in-depth
security analysis of a small (41) number of IoT apps. We focus on large-scale
lightweight automated analysis, thus maximizing external validity. Fernandes et
al. [29] performed an analysis of smart home apps on the Samsung SmartThings
platform, revealing numerous issues due to over-privileging. Our analysis focuses
on mobile IoT apps rather than third-party smart-home apps. Mohanty and
Sridhar conducted a review of the security of 102 IoT companion apps [51]. This
paper focused specifically on identifying 9 pre-determined security issues in apps
built using hybrid frameworks; our work has broader scope both in terms of
types of apps, and issues of interest.

9 Conclusions
We analyzed the privacy posture of 455 Android mobile companion apps by
evaluating three pillars of it including data privacy, security, and risk. Our
study shows that overall app data privacy, security, and risk posture are rea-
sonable. However, it also evidences some ecosystem-level shortcomings; such as
over-requesting permissions; and the widespread use of programming and config-
uration practices negatively affecting security. We hope our work can act as the
starting point for further investigations in this domain, and facilitate the design
of software quality metrics and guidelines that can lead to better app design.

References

1. Common vulnerability scoring system version 3.1: Specification document.
https://www.first.org/cvss/specification-document (2019)

2. GitHub - linkedin/qark: Tool to look for several security related Android applica-
tion vulnerabilities. https://github.com/linkedin/qark (2019)

3. Mobile security framework. https://github.com/MobSF/Mobile-Security-
Framework-MobSF (2020)

18 Neupane, Tazi et al.

4. Cwe list version 4.6. https://cwe.mitre.org/data/index.html (2021)
5. Popular android apps with 142.5 million collective installs leak user

data. https://cybernews.com/security/research-popular-android-apps-with-142-5-
million-collective-downloads-are-leaking-user-data/ (2021)

6. Bulk domain blacklist checker. https://www.bulkblacklist.com (2022)
7. Google play. https://play.google.com/store (2022)
8. Lfx insights. https://insights.lfx.linuxfoundation.org/projects (2022)
9. Metrics - open source security foundation. https://metrics.openssf.org (2022)
10. Permissions on android. https://developer.android.com/guide/topics/permissions/overview

(2022)
11. Play store downloader. https://github.com/ClaudiuGeorgiu/PlaystoreDownloader

(2022)
12. Url/ip lookup | webroot brightcloud. https://www.brightcloud.com (2022)
13. Website reputation checker. https://www.urlvoid.com (2022)
14. Aafer, Y., Tao, G., Huang, J., Zhang, X., Li, N.: Precise android api protection

mapping derivation and reasoning. In: ACM CCS (2018)
15. Alhirabi, N., Rana, O., Perera, C.: Security and privacy requirements for the in-

ternet of things: A survey. ACM Transactions on Internet of Things 2(1), 1–37
(2021)

16. Allhoff, F., Henschke, A.: The internet of things: Foundational ethical issues. In-
ternet of Things 1, 55–66 (2018)

17. Alshehri, A., Marcinek, P., Alzahrani, A., Alshahrani, H., Fu, H.: PUREDroid: Per-
mission Usage and Risk Estimation for Android Applications. In: ICISDM (2019)

18. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: PLDI (2014)

19. Baalous, R., Poet, R.: How dangerous permissions are described in android apps’
privacy policies? In: SIN (2018)

20. Babun, L., Celik, Z.B., McDaniel, P., Uluagac, A.S.: Real-time analysis of privacy-
(un) aware iot applications. In: PETS (2021)

21. Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D., Weisgerber, S.: On
demystifying the android application framework: Re-visiting android permission
specification analysis. In: USENIX Security Symposium (2016)

22. Biswas, D., Aad, I., Perrucci, G.P.: Privacy panel: Usable and quantifiable mobile
privacy. In: ARES (2013)

23. Catarinucci, L., de Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi,
M.L., Tarricone, L.: An IoT-Aware Architecture for Smart Healthcare Systems.
IEEE Internet of Things Journal 2(6), 515–526 (Dec 2015)

24. Celik, Z.B., Fernandes, E., Pauley, E., Tan, G., McDaniel, P.: Program analysis of
commodity iot applications for security and privacy: Challenges and opportunities.
ACM Computing Surveys (CSUR) 52(4), 1–30 (2019)

25. Chatzoglou, E., Kambourakis, G., Smiliotopoulos, C.: Let the cat out of the bag:
Popular android iot apps under security scrutiny. Sensors 22(2) (2022)

26. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

27. Ding, W., Hu, H.: On the Safety of IoT Device Physical Interaction Control. In:
ACM CCS (2018)

28. English, R., Schweik, C.M.: Identifying success and tragedy of floss commons: A
preliminary classification of sourceforge.net projects. In: FLOSS ICSE Workshops
(2007)

Privacy, Security, and Risk Postures of IoT Apps 19

29. Fernandes, E., Jung, J., Prakash, A.: Security Analysis of Emerging Smart Home
Applications. In: IEEE S&P (2016)

30. Harkous, H., Fawaz, K., Lebret, R., Schaub, F., Shin, K.G., Aberer, K.: Polisis:
Automated analysis and presentation of privacy policies using deep learning. In:
USENIX Security Symposium (2018)

31. Hinkle, D.E., Wiersma, W., Jurs, S.G.: Applied statistics for the behavioral sci-
ences, vol. 663. Houghton Mifflin College Division (2003)

32. Holloway, D., Green, L.: The Internet of toys. Communication Research and Prac-
tice 2(4), 506–519 (Oct 2016)

33. ISO/IEC: ISO/IEC 20924:2018(en), Information technology — Internet of Things
(IoT) — Vocabulary. https://www.iso.org/obp/ui/#iso:std:iso-iec:20924:ed-
1:v1:en

34. Jansen, W.: Research Directions in Security Metrics. Tech. Rep. 7564, NIST (2009)
35. Jha, A.K., Lee, S., Lee, W.J.: Developer mistakes in writing android manifests: An

empirical study of configuration errors. In: IEEE/ACM MSR (2017)
36. Jiang, J., Li, S., Yu, M., Chen, K., Liu, C., Huang, W., Li, G.: MRDroid: A Multi-

act Classification Model for Android Malware Risk Assessment. In: IEEE MASS
(2018)

37. Jing, Y., Ahn, G.J., Zhao, Z., Hu, H.: RiskMon: Continuous and automated risk
assessment of mobile applications. In: CODASPY (2014)

38. Kang, J., Kim, H., Cheong, Y.G., Huh, J.H.: Visualizing privacy risks of mobile
applications through a privacy meter. In: ISPEC (2015)

39. Kapitsaki, G., Ioannou, M.: Examining the Privacy Vulnerability Level of Android
Applications:. In: WEBIST (2019)

40. Krutz, D.E., Munaiah, N., Meneely, A., Malachowsky, S.A.: Examining the rela-
tionship between security metrics and user ratings of mobile apps: A case study.
In: WAMA (2016)

41. Kumar, D., Shen, K., Case, B., Garg, D., Alperovich, G., Kuznetsov, D., Gupta, R.,
Durumeric, Z.: All things considered: An analysis of iot devices on home networks.
In: USENIX Security Symposium (2019)

42. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S.,
Bodden, E., Octeau, D., McDaniel, P.: Iccta: Detecting inter-component privacy
leaks in android apps. In: IEEE/ACM ICSE (2015)

43. Li, R., Diao, W., Li, Z., Du, J., Guo, S.: Android custom permissions demystified:
From privilege escalation to design shortcomings. In: 2021 IEEE Symposium on
Security and Privacy (SP). pp. 70–86. IEEE (2021)

44. Liu, D.: play-scraper. https://pypi.org/project/play-scraper/
45. Liu, H., Li, J., Gu, D.: Understanding the security of app-in-the-middle IoT. Com-

puters & Security 97, 102000 (Oct 2020)
46. Marquez, J., Villanueva, J., Solarte, Z., Garcia, A.: IoT in Education: Integration

of Objects with Virtual Academic Communities. In: New Advances in Information
Systems and Technologies, vol. 444, pp. 201–212. Springer International Publishing,
Cham (2016)

47. Matheu, S.N., Hernández-Ramos, J.L., Skarmeta, A.F., Baldini, G.: A Survey of
Cybersecurity Certification for the Internet of Things. ACM Computing Surveys
53(6), 1–36 (Feb 2021)

48. Mathur, A., Malkin, N., Harbach, M., Peer, E., Egelman, S.: Quantifying users’
beliefs about software updates. Proceedings 2018 Workshop on Usable Security
(2018)

20 Neupane, Tazi et al.

49. Mauro Junior, D., Melo, L., Lu, H., d’Amorim, M., Prakash, A.: A Study of Vul-
nerability Analysis of Popular Smart Devices Through Their Companion Apps. In:
IEEE SPW (2019)

50. Merlo, A., Georgiu, G.C.: RiskInDroid: Machine Learning-Based Risk Analysis on
Android. In: IFIP SEC (2017)

51. Mohanty, A., Sridhar, M.: HybriDiagnostics: Evaluating Security Issues in Hybrid
SmartHome Companion Apps. In: IEEE SPW (2021)

52. Momen, N., Hatamian, M., Fritsch, L.: Did app privacy improve after the gdpr?
IEEE Security & Privacy 17(6), 10–20 (2019)

53. Mylonas, A., Theoharidou, M., Gritzalis, D.: Assessing privacy risks in android: A
user-centric approach. In: International Workshop on Risk Assessment and Risk-
driven Testing. pp. 21–37. Springer (2013)

54. Pandita, R., Xiao, X., Yang, W., Enck, W., Xie, T.: Whyper: Towards automating
risk assessment of mobile applications. In: USENIX Security (2013)

55. Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C.,
Molloy, I.: Using probabilistic generative models for ranking risks of android apps.
In: ACM CCS (2012)

56. Piccolboni, L., Di Guglielmo, G., Carloni, L., Sethumadhavan, S.: Crylogger: De-
tecting crypto misuses dynamically. In: IEEE S&P (2021)

57. Rahaman, S., Xiao, Y., Afrose, S., Shaon, F., Tian, K., Frantz, M., Danfeng, Yao,
Kantarcioglu, M.: Cryptoguard: High precision detection of cryptographic vulner-
abilities in massive-sized java projects. In: ACM CCS (2019)

58. Ren, J., Dubois, D.J., Choffnes, D., Mandalari, A.M., Kolcun, R., Haddadi, H.:
Information exposure from consumer iot devices: A multidimensional, network-
informed measurement approach. In: ACM IMC (2019)

59. Rivera, D., García, A., Martín-Ruiz, M.L., Alarcos, B., Velasco, J.R., Oliva, A.G.:
Secure communications and protected data for a internet of things smart toy plat-
form. IEEE Internet of Things Journal 6(2), 3785–3795 (2019)

60. Tandel, S., Jamadar, A.: Impact of progressive web apps on web app development.
International Journal of Innovative Research in Science, Engineering and Technol-
ogy 7(9), 9439–9444 (2018)

61. Utama, R.A., Sukarno, P., Jadied, E.M.: Analysis and Classification of Danger
Level in Android Applications Using Naive Bayes Algorithm. In: ICoICT (2018)

62. Vashi, S., Ram, J., Modi, J., Verma, S., Prakash, C.: Internet of Things (IoT): A
vision, architectural elements, and security issues. In: I-SMAC (2017)

63. Wader, S.S.: How android application permissions impact user’s data privacy?
International Journal of Research Publication and Reviews 2(3), 498–502 (2021)

64. Wang, X., Sun, Y., Nanda, S., Wang, X.: Looking from the mirror: Evaluating iot
device security through mobile companion apps. In: USENIX Security (2019)

65. Wilson, S., Schaub, F., Dara, A.A., Liu, F., Cherivirala, S., Leon, P.G., Andersen,
M.S., Zimmeck, S., Sathyendra, K.M., Russell, N.C., et al.: The creation and analy-
sis of a website privacy policy corpus. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). pp.
1330–1340 (2016)

66. Wuyts, K., Joosen, W.: Linddun privacy threat modeling: a tutorial. CW Reports
(2015)

67. Yermakov, M.: Understanding the android cleartexttrafficpermit-
ted flag. https://appsec-labs.com/portal/understanding-the-android-
cleartexttrafficpermitted-flag/ (2020)

View publication stats

https://www.researchgate.net/publication/360911071

