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Abstract. The Internet of Things (IoT) is revolutionizing society by
connecting people, devices, and environments seamlessly and providing
enhanced user experience and functionalities. Security and privacy issues
remain mostly ignored. Attackers can compromise devices, inject spuri-
ous packets into an IoT network, and cause severe damage. Machine
learning-based Network Intrusion Detection Systems (NIDS) are often
designed to detect such attacks. Most algorithms use labeled data for
training the classifiers, which is difficult to obtain in a real-world setting.

In this work, we propose a novel unsupervised machine learning app-
roach that uses properties of the IoT dataset for anomaly detection.
Specifically, we propose the use of Local Intrinsic Dimensionality (LID),
a theoretical complexity measurement that assesses the local manifold
surrounding a point. We use LID to evaluate three modern IoT net-
work datasets empirically, showing that for network data generated using
IoT methodologies, the LID estimates of benign network packets fit into
low LID estimations. Further, we find that malicious examples exhibit
higher LID estimates. We use this finding to propose a new unsuper-
vised anomaly detection algorithm, the Weighted Hamming Distance LID
Estimator, which incorporates an entropy weighted Hamming distance
into the LID Maximum Likelihood Estimator algorithm. We show that
our proposed approach performs better on IoT network datasets than
the Autoencoder, KNN, and Isolation Forests. We test the algorithm on
ToN IoT, NetFlow Bot-IoT (NF Bot-IoT), and Aposemat IoT-23 (IoT-
23) datasets, using leave-one-out validation to compare results.
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1 Introduction

The proliferation of IoT systems has introduced new, and emerging secu-
rity vulnerabilities [2,5,13,49] which can be readily exploited to cause harm.
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Network Intrusion Detection Systems (NIDS) play a critical role in security
of IoT networks [14]. Modern-day NIDS’ depend in part on machine learning
algorithms’ ability to detect malicious actors. However, heterogeneity and non-
standardized protocol of IoT networks have been posited as critical challenges
for enhancing the security of IoT systems [11,23,37] – networks with diverse
devices ranging from single-purpose machines to robust servers, each with var-
ied communication structures, are cumbersome to protect.

1.1 Limitations of Prior Attempts

Various machine learning solutions have been proposed for NIDS in IoT net-
works. Such solutions incorporate deep learning such as autoencoders and clas-
sifiers [10,38,44,45], as well traditional machine learning algorithms [32]. While
these solutions are each impactful in their own right, most are supervised learning
solutions requiring a fully annotated dataset to train – a costly, time-intensive
task. Moreover, with constantly evolving attack vectors (malicious actors acting
in novel ways), supervised NIDS solutions trained on datasets with particular
attack types become vulnerable [33,47]. Further, IoT networks are fundamen-
tally different from standard networks – devices will be added to the network,
and existing devices may have software/firmware updates with greater frequency.
Supervised algorithms are unable to detect new devices or updates in these sit-
uations without expensive retraining or reconfiguration [9].

To mitigate the problems of supervised learning algorithms in IoT, Haefner
and Ray [19] take the novel approach to intrusion detection in IoT from the
perspective of device traffic complexity. The authors measure the complexity of
network traffic on a per device basis to tune an (unsupervised) Isolation For-
est algorithm. They find that several single-purpose IoT devices contain simple
(non-malicious) network traffic, enabling us to assume trust of the device based
on its low network packet variability. However, the tuning procedure used for
the Isolation Forest assumes a particular contamination rate: for more complex
devices, they assume a more significant and fixed percentage of network packets
are anomalies, an assumption that could lead to false positives and not perform
well in real-world scenarios.

1.2 Proposed Approach

We take a different approach by using complexity measurements to detect mali-
cious data. Gorbett et al. [17] showed that heterogeneous IoT networks have a
lower complexity than regular non-IoT datasets using Intrinsic Dimensionality
(ID). ID is a property that has been proposed to measure the complexity of a
data set as a whole [50]. Gorbett et al. [17] measured IoT datasets at the net-
work level and device level. We instead show that at the sample-level (network
packets), IoT traffic can be categorized as benign or malicious using a device-
independent unsupervised model. We do this using LID, which estimates the
intrinsic dimension around an individual data point, and show that malicious
activity exhibits higher LID values than benign samples.
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1.3 Problem Statement

We focus on the question of heterogeneity and complexity in IoT networks and
their effects on detecting malicious activity via NIDS. Specifically, we ask the
following questions:

1. Do the properties of multi-device heterogeneous IoT networks exhibit funda-
mentally more complex behavior?

2. Can we detect malicious activity at the IoT network level in an unsupervised
manner, without the need to label each device and attack?

3. Which attacks are networks more susceptible to?

In this work, we measure the complexity of IoT network traffic using the
novel perspective of LID. Using this metric, we focus on the problem of detecting
malicious actors in IoT networks. We measure the complexity of network packets
by formulating an entropy-weighted Hamming distance calculation on top of
the LID measurement to construct a novel anomaly detection algorithm. The
results of the algorithm show that benign network data in IoT datasets exhibit
a lower LID measurement compared to malicious actors, which provides us the
opportunity to threshold this measurement during test time. The unsupervised
algorithm uses benign IoT network data as a training set and assumes any test
sample under threshold τ is benign network behavior. If the LID estimate is
above this threshold, we can flag the example as malicious.

Contributions

– We propose a novel algorithm for unsupervised anomaly detection using a
combination of Hamming distance and the Hill Maximum Likelihood Esti-
mator (MLE) LID, and show that the algorithm performs competitively with
several state-of-the-art algorithms.

– To the best of our knowledge, this is the first work that uses LID to measure
IoT datasets. We show the potential utility of this measurement in security
by outlining the theoretical basis for the approach.

– We measure the complexity of IoT traffic at the network level, and show that,
even for networks with several devices, benign data generally fits into low LID
estimates. In contrast, malicious data exhibits higher LID values.

2 Related Work

2.1 Intrusion Detection Systems

Intrusion Detection Systems (IDS) can broadly be classified based on 1) where
the detection is placed (network or host) and 2) the detection method that is
employed (Machine Learning (ML) anomaly-detection algorithms or traditional
signature-based detection where attack patterns are defined in a database). In
this work, we concentrate on network-based intrusion detection where anoma-
lies are classified based on an ML algorithm. ML based NIDS are employed in
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production into a key point within a network to monitor traffic to and from all
devices connected to the network. Network features are extracted from the entire
subnet about the passing traffic and scored by the ML detection algorithm. NIDS
can operate on-line (real-time detection) or off-line (batch detection). Real-time
detection offers more robust security and beneficial results as long as it does not
impair the overall speed of the network. Our study aims to characterize network
data in real-time.

2.2 IoT

IoT is a rapidly evolving field, with research being done at dozens of institutions
across industry and academia [11,23,25,37]. It is postulated that IoT increases
the vulnerability of networks because the attack surface has increased, with
many new entry and exit points with new devices available on networks [30,39].
A heterogeneous IoT network is typically made of various sub-devices within a
distributed network. It includes resource-constrained devices, such as a smart
light bulb or garage door opener, and more powerful devices such as embedded
and regular computers.

Existing research notes that IoT networks and devices have multiple intrusion
sources: IoT backends, cloud services supporting an IoT device, and other hubs
within the IoT system [1,35], which makes it difficult to implement traditional
intrusion detection approaches such as rule-based and signature-based methods.

2.3 State-of-the-Art Network Intrusion Models

Several works propose new and existing algorithms for intrusion detection on
commonly used datasets. Nour [32] released dataset TON IoT (TON IoT ), as
a baseline result that uses many supervised learning algorithms. Sahu et al. [41]
proposed a hybrid deep learning model which uses a CNN/LSTM framework
to achieve 96% accuracy on the IoT-23 dataset generated by [15] and outper-
formed several proposed deep learning-based attack detection. Kozik et al. [26]
use hybrid time window embeddings with a transformer neural network to clas-
sify IoT-23 data. This model achieves between 93% and 95% accuracy on attacks
in IoT-23 and does better than three other proposed deep learning models: Had-
dadPajouh et al. [18] use an LSTM trained on IoT devices execution operation
codes (OpCodes), Roy and Cheung [40] use a bi-directional LSTM for detecting
attacks on UNSW-NB15, and Azmoodeh et al. [7] use OpCodes to train a deep
Eigenspace model to detect attacks. Moustafa and Slay released UNSW-NB15
dataset [33] that was generated using IXIA PerfectStorm. The dataset has been
widely used as a benchmark for comparison. MStream [10] is an online neural
network-based anomaly detection algorithm. It uses multi-aspect streams, such
as multiple features, continuous, categorical. This tool achieves 0.90 AUROC
on UNSW-NB15 and is considered state-of-the-art according to PapersWith-
Code.com1. The Edge-detect model [45] is another neural network-based frame-
work that proposes a lightweight model to detect anomalies on edge and was
1 https://paperswithcode.com/dataset/unsw-nb15.
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tested on UNSW-15 and is also considered state-of-the-art. Meftah et al. [29]
performed a similar approach to [22], using Recursive Feature Elimination and
Random Forests to select features, achieving up to 86% F1 accuracy. It should be
noted that UNSW-NB15 is only used in this paper to measure dataset complex-
ity, not anomaly detection. We specifically concentrate our anomaly detection
on IoT datasets, especially since the high complexity of UNSW-NB15 makes it
a poor choice for our algorithm.

Several other papers are published using alternative datasets that propose
different machine learning models for intrusion detection. Rezvy et al. [38] pro-
posed a deep learning framework for intrusion classification and prediction in
5G and IoT networks. They propose an autoencoder neural network for detect-
ing intrusion or attacks in 5G and IoT networks, evaluating the model on the
Aegean Wi-Fi Intrusion dataset. Their results showed an overall detection accu-
racy of 99.9% for different types of attacks. Kasongo and Sun [22] argue that
feature selection is essential for the performance of ML models in intrusion detec-
tion since model accuracy decreases with more high-dimensional datasets. They
apply a filtering technique on features and train several ML models using this
technique, showing strong performance. They relate the feature selection to IoT
devices with limited capacity, showing that less robust modeling techniques are
favorable in limited-capacity systems such as small IoT devices.

2.4 Complexity and Anomaly Detection in Deep Learning

Neural networks trained with back propagation provide diverse structures and
objectives to learn from high-dimensional data. Despite their incredible power,
anomaly detection remains an open research problem, even in state-of-the-art
models. Notably, several works in computer vision have shown that classifica-
tion, generative, and unsupervised deep neural networks are all susceptible to
anomalous data [16,20,31,34,43]. For example, one common computer vision
experiment involves training a deep learning model on CIFAR-10, a dataset
with 60,000 images labeled into ten classes. It is expected that the likelihood
of a CIFAR-10 test image will be higher than images from other datasets dur-
ing test time. However, several papers have shown that the examples from the
dataset SVHN produces a higher likelihood when passed through the model
trained on CIFAR-10 [31,34,43]. Recently, Serra et al. showed that anomalous
high-likelihood data could be linked to complexity [43]. They find that the sim-
plicity of SVHN data compared to CIFAR-10 data causes the deep learning model
to exercise a higher likelihood on SVHN examples than the complex CIFAR-10
data. They use image compression scores as a complexity metric (likelihood ratio)
to determine whether the high likelihood can be attributed to lower complexity.

2.5 Complexity and Anomaly Detection in Security

Interestingly, a similar complexity finding to [43] was found in a recent security
paper [19]. Using data from various IoT devices, they find that each device
has varying complexity. They formalize a complexity measure (IP Spread/IP



148 M. Gorbett et al.

Depth) per device in order to fine-tune an Isolation Forest anomaly detection
algorithm. Their architecture, ComplexIoT, measures network traffic on a device
level, which can be used in Host Intrusion Detection Systems. This work is similar
to ComplexIoT [19] in that we propose a complexity measurement; however,
there are several key differences: (i) We analyze IoT datasets both from the
point of view of network-level and the device level, while ComplexIoT only looks
at device level complexity. (ii) ComplexIoT proposes a device complexity score
to moderate the contamination rate of an Isolation Forest. This is problematic
as it assumes x% of a device’s traffic will be malicious given a complexity score
and lead to false positives. (iii) The ComplexIoT complexity score is based on IP
spread and IP depth and does not consider other network features to compute its
complexity estimate. (iv) The efficacy of the ComplexIoT approach has not been
measured via binary classification metrics on benign and malicious examples. In
this paper, we measure the results of the weighted Hamming LID estimator on
common IoT network Intrusion datasets.

3 Proposed Approach

We begin by explaining concepts and mathematics behind ID, in order to gain
an intuitive understanding of the approach. We will then use this to detail
LID. Next, we describe our approach to measuring LID in IoT datasets. Finally,
we summarize the Weighted Hamming Distance LID Estimator, including the
algorithm details, baseline models we compare against, and our experimental
protocol.

3.1 Intrinsic Dimensionality

The ID of a dataset can be thought of as the minimum number of variables
needed to retain a full approximation of the data [8]. It is based on the obser-
vation that high-dimensional data can often be described by a lower number of
variables. The utility of lower dimensional representations is apparent through-
out ML research, from data compression (such as autoencoders [21]) to dimen-
sionality reduction (PCA). ID is akin to autoencoders and PCA, however quite
distinct in that its an estimate of the lowest possible dimension of a dataset
(e.g. the lowest possible bottleneck size in an autoencoder), and not a reduction
technique in itself. ID can be thought of as a geometric property to measure
complexity of a dataset as a whole [50].

Formally, the ID of dataset X ∈ R
m×n, with m samples and n features, lies on

a lower dimensional manifold M, where ID = dim(M), i.e. ID is the dimension
of the manifold M of the data. Usually, the ID measurement is significantly less
than extrinsic dimension n, or number of features.

The main approach to estimate ID involves examining the neighborhood
around a reference point xi for each x in X . A common equation used in existing
research was proposed by Levina and Bickel [27]:
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ID(X ) =

⎛
⎝ 1

m(k − 1)

m∑
i=1

k−1∑
j=1

log
Tk(xi)
Tj(xi)

⎞
⎠

−1

(1)

where m is the number of samples, xi is a sample in the dataset, and k and j are
integer values representing the kth and jth nearest neighbors from xi. Tk(xi) is
the distance between xi and xk, similarly, Tj(xi) is the distance between xi and
xj . Intuitively, Eq. 1 measures the rate that new neighbors are encountered as
we move out from the reference point xi.

Recently, ID has been gaining relevance in the machine learning commu-
nity [4,6,36]. Pope et al. [36] showed that common computer vision datasets
exhibit very low intrinsic dimension relative to their number of pixels. They
also showed that the intrinsic dimension greatly impacts learning: the higher the
intrinsic dimension of a dataset, the harder it is to learn from it. In addition,
they showed that the extrinsic dimension of the dataset, i.e.the total number of
pixels per image in a dataset, did not effect learning and generalization, indicat-
ing that sample complexity only depends on the intrinsic dimension rather than
the total dimension of the dataset. Ansuini et al. [6] showed that neural net-
works exhibit low intrinsic dimensionality at deep layers of the models. Outside
of deep learning, intrinsic dimensionality has been used in applications such as
anomaly detection[46], clustering, similarity search, and deformation in complex
materials.

3.2 Local Intrinsic Dimensionality

In contrast to ID, LID estimates individual data samples, rather than the full
dataset. It is based on the observation that individual data points in a dataset
often fit within a specific lower-dimensional structure when only considering a
subset of the nearby data. As a result, these values can vary greatly within a
dataset. Intuitively, the LID measurement can be interpreted as the dimension
immediately surrounding a data point.

LID has been proposed for anomaly/out-of-distribution detection [48] as well
as detection of adversarial examples in deep neural nets [28]. Theoretically, exam-
ples within a dataset should have lower LID values than anomalous examples
generated from an alternative source.

Amsaleg et al. [4] propose several estimators for the LID, though they note
that these are theoretical quantities and only estimates of the true local dimen-
sion. We use their Maximum Likelihood Estimator in Sect. 3.3. Their equation
provides a strong balance between efficiency and complexity:

L̂ID(x) = −
(

1
k

k∑
i=1

log
ri(x)
rk(x)

)−1

(2)

where ri is the distance of data point x to the ith closest neighbor and rk is the
distance to the kth neighbor. Additionally, it has been shown that hyperparam-
eter k is sensitive and must be experimentally tuned. Equation 2 is a theoretical



150 M. Gorbett et al.

quantity, and it should be noted that L̂ID(x) is an estimation. Further, the
dimension estimate is usually not an integer value, except in idealized distribu-
tions and datasets.

Ma et al. [28] used LID estimates to characterize adversarial subspaces in
deep learning. They showed how traditional density measures can fail to detect
adversarial examples in the final layers of deep learning models, while LID mea-
surements can better characterize these subspaces. This is because traditional
measures only measure the density of neighboring points surrounding an exam-
ple, whereas LID measures the rate at which new neighbors occur.

Algorithm 1. Weighted Hamming Distance LID Estimator
Require: Xtrain, Xtest, nearest neighbors k, threshold τ
Require: Xtrain contains only benign examples

for xi in Xtest do
{H1...Hm} ← H(xi, {Xtrain})
{H1...Hn} ←for all distinct Hi ∈ {H1...Hm}
if 0 is in {H1...Hn} then

xi is benign (exact match)
else

LID(xi) ← LID({H1...Hm}, k)(Eq.2)
if LID(xi) ≤ τ then

xi is benign
else

xi is malicious
end if

end if
end for

3.3 Weighted Hamming Distance LID Estimator

LID is typically measured on a sample using distances from its neighbors in a
dataset, and can be thought of as the rate of growth between a point and its
neighbors. In this work, we use Eq. 2 for LID estimation, using the training data
Xtrain as neighboring points.

Distance Metric. For the distance metric required in Eq. 2, we use Hamming
Distance to compute similarity between both categorical and continuous fea-
ture points. Hamming distance is computed for continuous features by setting
them to mismatching if they don’t match exactly. While Euclidean Distance
is typically used in Eq. 2 to measure LID, Ma et al. [28] suggested not using
Euclidean Distance as the underlying distance metric. Choosing the Hamming
Distance metric over Euclidean Distance for continuous variables showed better
experimental results. Effectively, this turns each pairwise feature distance into a
binary metric: 0 for same, 1 for different. We compute Hamming Distance using
the Python SciPy library as:
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H(xi, xj) =
Number of mismatching features

Total Features
(3)

Entropy. We calculate entropy of each feature and set it as the weight. In a
dataset with n features, we set weight wi for feature i to n/Entropy(i), where
the entropy of a feature i is:

−
m∑
j=1

pj log2(pj) (4)

and n is the total number of features and j are specific classes in the feature. pj
is calculated by getting the counts of each class within feature i. For example,
the protocol feature may have TCP and UDP classes, we compute the counts
for each to calculate entropy. We find that features with low entropy should be
weighted more since they are stable properties of benign samples. For example, if
benign examples come from TCP protocol 99% of the time, we can theorize that
new examples matching the TCP protocol may be similar to a benign example.

After computing Hamming distance between xi and the set of Xtrain, we have
a set of H1...Hm Hamming distances the size of Xtrain. We filter all duplicate
distances where Hi = Hj , to include only a single distance value for each cluster
of distances, leaving a set of H1...Hn distances where n ≤ m. In other words,
when examples have the same distance H to a reference point xi, we filter them
into a single distance in order to gather a unique set of distances. From here, we
are able to compute the final LID score using Eq. 2.

Fig. 1. A visual explanation of how the Weighted Hamming Distance LID estimator
can detect anomalous examples where the traditional KNN algorithm will fail. See the
end of Sect. 3.3 for more details.
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Figure 1 depicts a visual example of how the Weighted Hamming LID Esti-
mator can classify an anomalous example where the KNN algorithm will fail.
For example, the traditional KNN algorithm can discriminate test examples
as benign or malicious by measuring a samples average distance to K training
samples, where lower average distances indicate a benign example and higher
distances indicate a malicious example. Figure 1 shows how KNN can fail on a
simple two dimensional problem: the red X is closer to several training exam-
ples, however, the black dot matches the more relevant feature, X2. We show
how the LID estimate corrects this issue, yielding a lower value for the benign
example compared to the malicious example. We weight the Hamming distances
in the KNN and LID estimates with 2/Entropy of each feature. Entropy for X1
is 1.99 and 2.01 for X2. In the image, results are presented with a weighted
Hamming distance, however Euclidean distance yields the same results on KNN
when K = 3. Here, the LID is calculated as −1/ln(0.502) and −1/ln(0.498).

3.4 Baseline Models

In the previous section, we explain our proposed Weighted Hamming Distance
LID Estimator model. We compare our proposed model with several models as
baselines in the tasks of detecting attacks in the IoT networks. These models
include include several modern and classic algorithms: KNN, Isolation Forest,
and Autoencoder. In the following, we briefly explain each of these models.

KNN Algorithm. K-Nearest Neighbors (KNN) classification is an unsuper-
vised machine learning model that measures the distance between a sample point
and its neighbors. It takes an arbitrary distance measurement and measures the
average distance between a reference point and its neighbors using this distance.
In our experiments, we take the average of these nearest neighbor distances and
use them to threshold scores. Theoretically, reference points with lower KNN
averages should belong to the normal, non-malicious examples in the dataset,
and malicious examples should have higher KNN averages.

Isolation Forest. Isolation Forest is an efficient algorithm to determine anoma-
lies in an unsupervised manner. It does not need a profile of what is normal and
not normal and identifies anomalies independent of labels. The algorithm relies
on the tendency of anomalies to be easier to separate from the rest of the sample
compared to normal points.

Notably, an Isolation Forest was used in [19], where they tune the contamina-
tion parameter based on the complexity of an IoT device. They argue that devices
with low complexity should have contamination values close to zero because their
expected network traffic should fit certain patterns, hence the device should never
receive anomalous traffic. This means that, should the device be compromised,
the algorithm would likely not classify the attack as anomalous because of the
low expected contamination. As a result, the algorithms assumption that a cer-
tain percentage of examples are contaminated makes it vulnerable to changes in
the number of contaminated records.
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Autoencoder. Autoencoder is a neural network based model commonly used
for unsupervised anomaly detection, such as in [38]. The model compresses the
training set into a bottleneck representation before reconstructing it. We train
the autoencoder on benign examples, and in theory, the reconstruction loss
should be smaller for all benign examples compared to malicious examples.

The objective function is the reconstruction loss: given example x and con-
tinuous feature xc we use mean-squared error:

L(xc, x
′
c) = ||xc − x′

c||2 (5)

where x′ is the reconstructed output of the neural network. For discrete categor-
ical features, we encode the categories into embedding layers to input them into
the model. The outputs of the autoencoder for categorical variables are one-hot
vectors, denoted xd, and we use cross entropy for the objective function:

L(xd, x
′
d) = xdlog(x′

d) + (1 − xd)log(1 − x′
d) (6)

We sum the loss of the continuous and categorical variables to obtain the full
reconstruction loss. We use Adam optimization with the default learning rate.

3.5 Experimental Setup

To train each model in an unsupervised manner, we first take all clean examples
(Xbenign). For each experiment, we run the algorithm on Xbenign using leave-one-
out cross validation,i.e., calculate distances H from xi on each member of the
training set but xi. We also pass it the entire set of malicious data, Xmalicious.
The result of each sample is either 0 distance, exact match, or a weighted Ham-
ming LID estimate. Zero’s are automatically classified as benign, while lower
LID estimates are also classified as benign.

A proper threshold τ can be determined based on the desired accuracy rate.
In other words, if its important to classify all malicious samples, we can set a
lower τ for higher detection, though this may lead to some benign examples
being classified as malicious (false positive).

To measure results, we use Receiver Operating Characteristic curve (ROC)
and Precision-Recall curve (PR). ROC plots the True Positive Rate (TPR)
against False Positive Rate (FPR). PR plots the precision versus the recall cal-
culated by following formulas:

precision =
True Positive

True Positive + False Positive
(7)

recall =
True Positive

True Positive + False Negative
(8)

4 Datasets

This section summarizes the datasets we use in our experiments. We use three
IoT related datasets: (TON IoT, NF Bot-IoT, IoT-23,).
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4.1 TON IoT

TON IoT [3,32], published in 2020, comprises heterogeneous IoT data across
several devices. The work uses several data source types, including sensor, raw,
and log data. Additionally, it includes several infrastructure layers in the testbed
architecture, such as the edge, fog, and cloud layers with nine types of generated
attacks: Distributed Denial-of-Service (DDoS), Scanning, Ransomware, Back-
door, and Injection attacks. The dataset has 41 total features; however, the
authors recommend not to use source IP/port and destination IP/port. The
dataset simulates traffic from seven IoT sensors: weather, smart garage door,
smart fridge, smart TCP/IP Modbus, GPS tracker, motion-enabled light, and a
smart thermostat.

4.2 NF Bot-IoT

NF Bot-IoT [42] is a dataset based on the BotNet IoT dataset [24,25]. Botnets
are an important attack vector to protect against as they have been the source of
several breaches over the past few years [24]. NF Bot-IoT converts four common
network NIDS datasets into network flow datasets using the commonly deployed
NetFlow [12] protocol for network traffic collection. Authors argue NetFlow’s
features are easier to extract compared to the complex features used in the orig-
inal NIDS datasets since NetFlow’s features are usually extracted from packet
headers. The dataset includes several attacks, including DDoS, Denial-of-Service
(DoS), OS and Service Scan, Keylogging, and Data exfiltration attacks.

4.3 IoT-23

IoT-23 [15] was released in 2020. The dataset has 23 different scenarios, of which
three are benign traffic scenarios captured on real IoT devices. The dataset
contains almost 11 million total records; however, with the difficulty of modeling
this much data, we sample a million records with the following logic: From the
entire dataset, we sample 500K malicious records and 500K benign examples
from simulated files that contain a source IP or destination IP with an internal
IP address and have at least 50 samples belonging to that specific IP address. We
find that 99.99% of internal IPs have at least 50 samples. We also included all
samples from three real devices (Philips HUE smart LED lamp, Amazon Echo,
and a Somfy smart door lock) with 1,634 total packets.

We categorize these devices similar to IoT-Sense as a light (Philips HUE
smart LED lamp), Smart Controller (Amazon Echo), and Appliance (Somfy
smart door lock). Philips HUE light is in both datasets so that it can be used
for comparison device-specific ID measurements.

This dataset also captures 20 simulated scenarios of both benign and mali-
cious traffic. It offers several attack examples: DDoS, FileDownload (to infected
device), HeartBeat (indicates packets sent on the connection are used to keep
track of infected host by CC server), Mirai, Torii, and Okiru BotNets (new com-
mon attacks), and HorizontalPortScan (used to gather information for further
attacks).
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Table 1. Dataset summaries including total number of samples, percentage of benign
samples, percentage of malicious samples, percent duplicates, number of features, and
number of attacks.

Name Samples Ben(%) Mal(%) Dup (%) Feats(#) Attk(#)

UNSW-NB15 82K 45% 55% 12.5% 42 -

KDD Cup 24K 45.8% 54.2% 0% 41 -

TON IoT 461K 65% 35% 62% 38 9

IoT-23 1M 50% 50% 2% 19 7

IoT Sense 54K 100% 0 63% 21 -

NF Bot-IoT 599K 21.7% 78.3 0% 12 4

4.4 IoT Dataset Features

We use the available features for each dataset, except we exclude source and
destination IP and port as well as any ID or timestamp columns for TON IoT
and IoT-23. We include IPs and ports in NF Bot-IoT because of its small num-
ber of available features to provide more discriminability. Features among the
datasets include protocol, source, and destination bytes, connection state, ser-
vice, duration, missed bytes, number of packets, window size, payload, entropy,
DNS, SSL, and HTTP properties.

5 Anomaly Detection Results

In this section, we summarize our findings of LID measurements on IoT networks,
showing that we can use the localized complexity measurement of LID to detect
anomalous behavior.

5.1 Algorithm Comparison Results

Gorbett et al. [17] showed that benign IoT network datasets and devices exhibit
low ID measurements. In this section, we extend this finding to the sample level,
showing that malicious examples have higher LID. We use this finding for the
task of anomaly detection, using three public IoT datasets with benign and
malicious examples. Results are compared against each other in Table 2.

Table 2 reports results of our proposed Weighted Hamming LID versus other
baseline models of KNN and Weighted Hamming KNN, Isolation Forest, and the
Autoencoder. We run experiments with four different K values of 3, 5, 10, and 20
for the KNN and Weighted Hamming algorihtms, and report the best findings
of each. In all three cases, the same K value performed the best between KNN,
Weighted KNN, and Weighted Hamming LID algorithms for the given dataset.
For NF Bot-IoT K = 5, TON IoT K = 10, and IoT-23 K = 3.

Our algorithm outperforms baseline models in all but one case (TON IoT
PR performs best with the Autoencoder). The most notable results were with
the IoT-23 and NF Bot-IoT datasets, where the algorithm outperformed other
unsupervised learning algorithms in both ROC and PR scores.
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Table 2. Results of the Weighted Hamming LID algorithm on 3 datasets, plus the
results of four baseline models. We experiment with K values of 3, 5, 10, and 20 for
the KNN, KNN (Weighted Hamming), and Weighted Hamming LID estimators. We
choose the K with the best result for each experiment, with K = 5, 10, and 3 for NF
Bot-IoT, TON IoT, and IoT-23 respectively. The best ROC and PR for each dataset
is in bold.

NF Bot-IoT Ton-IoT IoT-23

Test Type ROC PR ROC PR ROC PR

Isolation Forest 0.957 0.999 0.567 0.364 0.492 0.594

KNN 0.961 0.999 0.973 0.943 0.990 0.970

Weighted Hamming KNN 0.955 0.998 0.973 0.944 0.990 0.918

Autoencoder 0.944 0.998 0.981 0.985 0.981 .972

Weighted Hamming LID (Ours) 0.970 0.999 0.985 0.983 0.998 0.994

Table 3. Anomaly Detection Results specific attack type available in each dataset.
Varied results indicate networks may be more prone specific attacks in IoT networks.

Dataset Attack Sample Size ROC PR

IoT-23 Horiz.PortScan 199,283 0.998 0.989

DDoS 54,750 0.999 0.892

Okiru 53,959 0.999 0.701

C&C 271 0.999 0.632

NF Bot-IoT Theft 1,909 0.990 0.902

DDoS 56,844 0.999 0.999

DoS 56,833 0.998 0.999

Recon. 470,655 0.963 0.999

TON IoT Scanning 19,995 0.993 0.812

DoS 19,994 0.987 0.755

Injection 19,930 0.995 0.932

DDoS 19,790 0.966 0.838

Password 17,428 0.970 0.746

XSS 8,914 0.952 0.727

Ransomware 7,221 0.983 0.511

Backdoor 19,908 0.983 0.621

MITM 1,041 0.988 0.523

Notably, algorithms that performed distance computations to their closest
neighbors exhibited the best results (KNN, weighted Hamming KNN, and LID
algorithms). Isolation Forest had low results for both TON IoT and IoT-23. The
Autoencoder did well on two out of the three datasets, but did not perform as
well on NF Bot-IoT.

The Weighted Hamming LID algorithm showed the most consistent results
across all three datasets, highlighting its efficacy and promise as a robust approach.
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These results indicate it is a strong alternative to classic anomaly detection algo-
rithms such as the Autoencoder, Isolation Forest, and K-nearest neighbors. The
algorithm shows promising results across three unique IoT datasets, indicating it
generalizes well to several types of attacks and network datasets.

5.2 Attacks Specific Results

In this experiment, we break down our results by attack in each IoT dataset
using the Weighted Hamming Distance LID estimator. We group some IoT-23
attacks based on their broad category; for example, we group File Download and
Heartbeat attacks as C&C, because these attacks both come from a known C&C
server and they have a small overall sample size. The results of this experiment
is reported in Table 3,

Results are varied for IoT-23 and TON IoT ; stronger results for NF Bot-IoT.
While some attacks are easily recognizable by our algorithm, such Distributed
Denial-of-Service (DDoS) andDoS attacks, others do very poorly, suchTON IoT ’s
Ransomware, Backdoor, and Man-in-the-middle attack (MITM) attacks.

The first two datasets in Table 3, IoT-23 and NF Bot-IoT, performed well on
all ROC metrics for each attack. Precision-Recall metrics performed slightly worse
than ROC in IoT-23, with lower values for Okiru and C&C attacks. We found that
both attacks had network packets that were largely indistinguishable from benign
network. For example, Okiru attacks were generally TCP protocol with packet
count of 1 and low byte count, similar to many benign network packets.

While the results of attack detection using the Weighted Hamming Distance
LID estimator are stronger than other algorithms, results on specific attack types
show that IoT networks may still be vulnerable in certain cases. In particular,
TON IoT did not perform as well, leading us to further analyze the data. We
found that of 300K benign examples, 61.8% were packets with an exact match
with another benign packet, i.e., all 38 features had the same value. Further, more
than 26K malicious examples had an exact match with at least one benign sample.
These factors indicate that the data generated forTON IoT has low discriminabil-
ity when excluding source and destination IPs and ports, as we did. We note in
Sect. 4.4 that the authors of the original papers [3,32] performed supervised clas-
sification on TON IoT, yielding high accuracy using both source and destination
IPs and ports. They recommended removing source and destination IPs and ports
for further experimentation, however, the remaining 38 features contained identi-
cal or close to identical values for benign and malicious examples.

6 Conclusion

In this work, we view several network datasets through the lens of complexity
and show that IoT datasets exhibit a lower ID complexity estimate than stan-
dard network collections. This finding extends to the point-wise estimation of
complexity, where individual samples in (benign) IoT datasets contain low LID
measures. We show that benign examples can be identified by either 1) exactly
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matching the features of a training set sample or 2) by a low LID estimate.
We propose a novel algorithm for detecting malicious actors in an unsupervised
manner, providing the ability to deploy a model into production with only two
hyperparameters needed (k value for distance measurements and threshold value
τ). The algorithm is based on the theoretical LID estimation using the Hill MLE
estimator, using an entropy weighted Hamming distance for measuring distances
between points and features.

Future Work. Several avenues can be explored to extend this work in future
research. First, evaluating our model with a broader set of attacks would enable
a more robust picture of LID’s strengths and weaknesses. Second, this work
focused on regular IoT networks. In the future, we want to investigate the appli-
cability of our approach on specialized IoT networks, such as industrial IoT.
Lastly, evaluating the LID metric in more complex domains, such as more com-
plex network architectures, would provide a broader picture of the algorithms
capabilities.
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