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Abstract—The approximate set-membership data structures
(ASMDS), like the Bloom filter and cuckoo filter, provide
constant-time testing of set-membership. They produce false
positives because of a loss of bits during compression. However, in
case all potential false positives are known (or can be evaluated),
it is possible to use filter cascades and collectively eliminate such
false positives. The application of filter cascading algorithm to
the Bloom filter was originally proposed for optimizing memory
usage and is currently an integral part of CRLLite.

Recently proposed cuckoo filters function similarly to Bloom
filters but with cuckoo hashing techniques. They produce com-
paratively lower storage overheads and additionally support
efficient deletions. Therefore, applying the cascading algorithms
to the cuckoo filter will also produce lower storage overheads
in comparison to cascading Bloom filters. Further, cuckoo fil-
ter’s support for deletions enable efficient updates to the filter
cascades.

In this paper, we present the design and analysis of cascading
cuckoo filters, a potentially more space-optimal ASMDS in
comparison to cascading Bloom filters. A novel contribution of
this paper is the application of filter cascading algorithm to
cuckoo filter, which has not been proposed before to the best
of our knowledge.

Index Terms—Cuckoo filter, Approximate Set-Membership data
structures, Bloom filter, Cuckoo Hashing, Data Compaction and
Compression

I. INTRODUCTION

The approximate set-membership data structures (ASMDSs)
[1] provide constant-time testing of set membership. They are
constant in size and can be one- or two-dimensional arrays
of bits or data buckets. ASMDSs provide an approximate
representation of a set of elements, and are built using data
compression and data compaction techniques. They produce
false positives because of lossy compression [2].

Consider a set R of elements, where R ⊂ U . The ASMDSs
can help test membership of an arbitrary element e where e ∈
U . The size m of an ASMDS is typically constant and much
smaller than |R|. The false positive rate p is dependent on the
ASMDS’s size and occupancy. The rate of false positives can
be minimized by choosing the appropriate size of the filter (m)
according to the size of the set (|R|) [1], but it is impossible to
eliminate false positives if the domain (U ) of element e grows
arbitrarily large [3]. However, in case of a finite set U , where
all potential false positives are known (or can be evaluated),

it is possible to use filter cascades and collectively eliminate
false positives [3].

The Bloom filter [2]—considered to be the canonical exam-
ple among ASMDSs [1]—is a one-dimensional bit array and
uses k hash functions to set an (almost) unique combination
of bits according to given the input element. Other proposed
variants [4]–[7] of Bloom filter work to improve spatial effi-
ciency and/or support deletion of elements from the set. The
application of a filter cascading algorithm to Bloom filter was
initially proposed by [8] for the purpose of optimizing memory
usage. To the best of our knowledge, it is also the first research
work to definitively eliminate false positives in Bloom filters,
although under limited preconditions. It is also currently being
implemented as an integral part of CRLLite [3], a revocation
information distribution system used in Mozilla Firefox.

The recently proposed cuckoo filter [9] functions similarly
to Bloom filters but with cuckoo hashing techniques. They
produce comparatively low space overhead and additionally
support efficient deletions. Therefore, applying a cascading
algorithm to cuckoo filter would logically produce lower
spactial overhead as compared compared to cascading Bloom
filter. Further, a cuckoo filter supports deletions, which makes
it more efficient to update the filter cascades.

In this paper, we present the design and analysis of cascad-
ing cuckoo filters, a potentially more space-optimal ASMDSs
in comparison to cascading Bloom filters. A novel contribution
of this paper is the application of filter cascading algorithm
[8] to cuckoo filter, which has not been proposed before to the
best of our knowledge.

The remainder of this paper is organized as follows: in
Section II, the concepts and properties of Bloom filter and
cuckoo filter are described in detail, including a comparison
between them. The filter cascading algorithm and how they
eliminate false positives is also explained in the same section.
In Section III, our novel design for cascading cuckoo filters
is introduced and discussed, including a description of each
operation involved and their space and time complexities. In
Section IV, we discuss collision handling in cascading cuckoo
filter and provide a comparison of computational complexities
between cascading cuckoo filter and cascading Bloom filter.
We present our planned future work in Section V, then we
conclude with a brief summary in Section VI.
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II. BACKGROUND

The Bloom filter is an approximate member query data
structure that guarantees true negative results but cannot guar-
antee true positive results. In other words, the Bloom filter
is a probabilistic data structure where there is a probability
that a particular element is present in the list but not for sure
[10]. As a constant-sized bit-array, the Bloom filter requires
less storage than other similar data structures like hash table.
It provides constant-time set-membership testing regardless of
size of the set, which makes it highly beneficial. A Bloom
filter has four main characteristics; 1) the number of bits in
the filter or the length of the bit array (one dimensional array),
2) the number of the hash functions, 3) the number of items
that are in the filter, and 4) the calculated probability of the
false positives. It is important to carefully choose the first
three characteristics to minimize probabilities of getting false
positive results. These characteristics cannot be modified once
the filter is instantiated. As proven by [11], the rigorous upper
bound ε for false positives for a finite Bloom filter with m
(m¿1) bits, n elements, and k hash functions is at most:

ε ≤ (1− e−k(n+0.5)/m−1)
k

(1)

Another space-efficient probabilistic data structure is a
cuckoo filter, as mentioned above. It is similar to the Bloom
filter, but with a lower false positive rate, and with a zero
false negative rate like a Bloom filter [12]. A cuckoo filter
uses a hash table employs independent hash functions; each
hash function determines the row of the fingerprint of an
element within that table. Insertion of an element to a row
that already has one (a collision) will cause that element
to move (termed kick) the existing element’s fingerprint to
the corresponding position determined by the second hash
function. If that position is already filled, then the existing
element will be kicked out. This process will be repeated until
either the new element is successfully inserted, or the insertion
algorithm reaches a set number of iterations (termed maximum
number of kicks) that indicates an infinite loop. In this case,
the cuckoo filter rehashes and finds all new hash functions and
reinserts all of the elements [9].

The cuckoo filter allows hashing of an element into a
number of bits, called fingerprint, to identify the bucket index
in which this element will be stored. It also allows more
than one element candidates to be stored in the same index
[9]. Storing the fingerprint of an element instead of setting
a combination of bits (like in Bloom filter) enables cuckoo
filter to support efficient deletion of elements for a set [9].
Furthermore, the cuckoo filter produces less false positive rate
and provides faster lookup speeds than the equivalent Bloom
filter for the same input set.

Cascading algorithm originally proposed to optimize mem-
ory usage in de Bruijn graphs [13] The de Bruijn graph is
a directed graph that represents overlaps between sequences
of symbols. The cascading Bloom filter was used to identify
potential next candidates in the graph by inserting elements
into the Bloom filter cascades. If the set of potential false

positives is known or finite, then it is possible to be eliminate
them [8].

III. DESIGN OF CASCADING CUCKOO FILTER

In this section, we present the design and methodology of
cascading cuckoo filter, which is the main contribution of this
paper.

The insert and lookup operations provided by the standard
Bloom filter [2] and cuckoo filter [9] are indistinguishable
by design. Therefore, we observed that the filter cascading
algorithm provided by [8], [14] can be applied to cuckoo filter
without making any changes. (This filter cascading algorithm
will be optimized in future work by leveraging the delete
operation, which is specially supported by cuckoo filter.) For
the sake of completeness, we briefly summarize the filter
cascading algorithm here.

A. Precondition for successful elimination of false positives

As mentioned in Section I, it is possible to eliminate false-
positives in ASMDSs only if the set of potential false positives
is known or can be identified. For practical implementations,
the false positives need to be identified in no more than
polynomial time. This precondition also implies that the set
of candidate elements for lookup (S) must be finite.

B. Cascading Algorithm

The core objective of filter cascading algorithm is incremen-
tally to represent smaller sets of false positives in subsequent
layers or “cascades” of primary ASMDSs. This process is
expected to definitely terminate with final cascade of ASMDSs
producing no false positives [3]. As shown in Fig. 1, given a
set R, where R ⊂ U and R∪S = U , insertion into cascading
cuckoo filter will begin with primary cuckoo filter (CF1) that
represents the set R. The CF1 would naturally produce false
positives (Set FP1) that belong to Set S. If the precondition
is satisfied, it is possible to identify all the elements in Set
FP1 by conducting a lookup operation of all elements in Set S
against the primary cuckoo filter CF1. All elements in Set FP1
can then be inserted into a separate cuckoo filter (CF2). Note,
the CF2 is the first level cascade of the primary cuckoo filter
and it represents the (false positive) elements in S, therefore
reversing the meaning of a successful lookup in CF2. This is
true for all cuckoo filter cascades at even-number layers.

The cascading process in the insertion operation is expected
to continue similarly for h+1 rounds until no more false pos-
itives can be identified. Cuckoo filters produce a false positive
rate p (less than 3% under optimized configuration), hence the
size of set FP1 is p × |U |. And the size of sets represented
by subsequent cuckoo filter cascades reduces by p times. The
cuckoo filter configuration parameters can be further optimized
according to the size of U , to reduce false positive rate and to
improve spatial efficiency [9]. Similarly, the number of filters
required and the overall spatial efficiency of cascading cuckoo
filter can be optimized by adjusting configuration parameters.
Methodology for selection is described in [9].
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CFh+1

Repeat until the set

of False Positives is

empty

Φ
Null Set of 
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Fig. 1. Inserting elements of a set R, where R ⊂ S, into cascading cuckoo
filter. Cuckoo filter at level h is represented as CFh and the resulting set of
false positives at level h is represented as FPh. The dashed arrows represent
“lookup” operations and the solid arrows represent “insert” operations.

C. Set-Membership Testing in a Cascading Cuckoo Filter

The primary cuckoo filter and its subsequent cascades
represent a set of elements either belonging to R or S. An
arbitrary input element e, where e ∈ U , can be used as input
to the lookup operation to the primary cuckoo filter and its
cascades. Note, it is important that the input element e belong
to Set U for successful membership testing. The ultimate
output of true or false can be produced even if e /∈ U , but
this output may not be meaningful.

Like Bloom filters, cuckoo filters do not produce false
negatives. Therefore, observing a negative output to the
lookup operation on any of the cuckoo filters terminates set-
membership testing. Assuming no negative output occurs for
any of the cuckoo filters, then the number of layers decides the
result of set-membership test. As shown in Fig. 2, to test set
membership of an arbitrary input element e, it is given as input
to “lookup” operation in cuckoo filters at each level, beginning
with the primary one. Unlike typical ASMDSs with a binary
output of yes or no, the cascading cuckoo filter produces a
multivariate output where the number of layers at which testing
terminated is a deciding factor. The set-membership test output
is summarized in Table I and is considered positive (e ∈ R)
if

• the testing terminated with a negative output of the lookup
operation at layer i and i is even; or,

• the testing terminated with a positive output on the final
layer cuckoo filter (in other words, no cuckoo filter
produced a negative for input element) and the total
number of layers is odd.

Otherwise, the test was unsuccessful.

layer of termination
even odd

negative output at layer i R S
positive output at final layer l S R

TABLE I
SUMMARY OF MULTIVARIATE OUTPUT OF SET-MEMBERSHIP TESTING IN

CASCADING CUCKOO FILTER, SHOWING IF e ∈ R OR IF e ∈ S

Yes

CF1

CF2

CFh+1

NoContains? S

NoContains? R

Yes

Repeat till final CF

NoYes Contains? SR

Fig. 2. Testing set membership using cascading cuckoo filters. The input
element e is looked up on the cuckoo filter at each layer until either a negative
output is encountered or until the final layer is reached.

D. Space And Time Complexity

Cuckoo filter, like all ASMDSs, is of constant-size regard-
less of the size of the set represents. However, cascading
cuckoo filters are of varying size and may have up to h + 1
filters, where h > 1. The amount of space occupied by
a cascading cuckoo filter is proportional to h. Optimizing
configuration parameters of a cuckoo filter can help reduce
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false-positive rate of the filter at each layer individually. It
may also collectively reduce the number of layers in, and total
space occupied by, cascading cuckoo filters.

Computations involved with the insert operation in a cascad-
ing cuckoo filter can be considered as a collection of insertion
operations and search operations at each layer. The largest
computation occurs in preparing the first cascade layer, where
all the elements in Set S must be looked up in the primary
cuckoo filter (CF1) to determine the set of false positives (FP1).
This operation alone requires computation in the order of
O(|U |). Computations required for subsequent layers reduces
incrementally by a magnitude determined by the false-positive
rate at each layer. The overall computational time complexity
of preparing cascading cuckoo filters is proportional to size of
superset U , and is of the order O(|U |). Note that the cascading
cuckoo filter ultimately represents the set R, which is a small
subset of U , and can provide set-membership definitively
only for elements in R. It is important further to note that
computational time-complexity of insertion in a cuckoo filter is
in fact proportional to the maximum number of kicks allowed
during insertion and only its amortized time is of O(1) [9].
The maximum number of kicks, regardless of how frequently
it is reached, can have significant impact for large sizes of set
R.

The computational complexity of set-membership testing
is also proportional to the number of layers h in cascading
cuckoo filter. Nevertheless, it is close to constant-time since
the value of h is small and doesn’t vary significantly with
variation in the cardinality of sets.

IV. ANALYSIS

In this section, we discuss collision handling in cascading
cuckoo filters and analyze them in comparison with cascading
Bloom filters. Potential areas for optimization are also noted
and described.

A. Collision Handling

The hash functions used in a cuckoo filter are independent
but not randomized. In theory, they produce collisions with
high probability [15]. However, an empirical evaluation of
cuckoo filters reveals otherwise, as described in [9]. If the size
of buckets and fingerprint size are both optimized, practical ap-
plications of cuckoo filter are able to achieve minimized false-
positive rates (< 5%) while maintaining maximum occupancy
(> 95%) [9]. By extension, the configuration parameters in
cascading cuckoo filters must also be tweaked according to
input elements. These application-specific customizations are
necessary to maintain space-efficiency. They are unavoidable
and must be the first step in building any practical application.

B. Comparison with the Cascading Bloom Filter

The Bloom filter requires 44% more space than the cuckoo
filter for a target false positive rate below 3% [9]. So the
primary cuckoo filter in cascades will naturally occupy less
space. The difference in space will multiply with each layer.
Therefore, the overall space occupied by cascading cuckoo

filter will also be comparatively lower than the equivalent
cascading Bloom filter. In some cases, this difference may
also result in a lower number of layers.

But, the number of kick operations in cuckoo filter during
insertion can cause significant overhead, especially in the
presence of multiple filters. This contrasts with a Bloom filter,
insertion is truly of constant time computational complexity,
making the cascading Bloom filters slightly more efficient than
cuckoo filters for insertions.

The cascading Bloom filter only supports batch construction
and it requires reconstruction after every deletion in the input
set (R) or after any update in the complementary subset (S).
This can be avoided in cascading cuckoo filter since cuckoo
filter supports deletions. Furthermore, cuckoo filter’s support
for efficient deletions may enable cascading cuckoo filters
to support individual updates. This will be either proven or
disproven in future work through further study and analysis.

V. FUTURE WORK

Evaluating the relationship between cuckoo filter parame-
ters, the size of input sets, and number of cascades is an
interesting subject for future work. Simulations may reveal
lower bounds and upper bounds on space complexities that
may prove valuable while selecting computation platform for
application. Prototyping the cascading cuckoo filter and com-
paring the performance and space efficiency through bench-
marking will provide insights into the difference in overhead
between cascading cuckoo filter and cascading Bloom filter.
Empirical analysis of collision handling will show the true
probability of collision occurrences, which is intuitively bound
to be higher in cascading cuckoo filters than it is in a single
cuckoo filter. Generalizing the filter cascading algorithm will
unlock the potential for other current and future ASMDSs to
definitively eliminate false positives.

Managing deletions in the cascading cuckoo filter will be a
next step in our research as well. Single cuckoo filters can
do so. However, to achieve deletion in a cascading filter,
without rebuilding the entire data structure, requires careful
thought. As collisions disappear, it would appear possible to
delete layers, for example. Considering sets of additions and
deletions in groups might be more optimal in such situations
to provide optimal transformations of the filter as sets grow
and shrink.

VI. CONCLUSION

In this paper, we presented the design and analysis of
cascading cuckoo filters, a potentially more space-optimal
ASMDSs in comparison to cascading Bloom filters. A novel
contribution of this paper is the application of filter cascading
algorithm to cuckoo filter, which has not been proposed before
to the best of our knowledge.

We build on the observation that the application of cas-
cading filters is independent of whether the underlying filter
is Bloom or another filter. So, we straightforwardly showed
that a cascading cuckoo filter is feasible. However, since a
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cuckoo filter has superior spatial properties for a given false-
positive rate, we observed that the cascading cuckoo filter
would be more efficient in terms of space. We noted how
multiple levels of the cascading algorithm could be created to
deal with collisons arising at insertions. We indicated that the
Bloom filter would be more efficient for insertions, given their
constant-time property. We left managing the deletion function
in our cascading cuckoo filter–available in the cuckoo filter but
not Bloom filters—as future work.
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