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Abstract—Website phishing continues to persist as one of the
most important security threats of the modern Internet era. A
major concern has been that machine learning based approaches,
which have been the cornerstones of deployed phishing detection
solutions, have not been able to adapt to the evolving nature of
the phishing attacks. To create updated machine learning models,
the collection of a sufficient corpus of real-time phishing data
has always been a challenging problem as most phishing websites
are short-lived. In this work, for the first time, we address these
important concerns and describe an adaptive phishing detection
solution that is able to adapt to changes in phishing attacks.
Our solution has two major contributions. First, our solution
allows for multiple organizations to collaborate in a privacy
preserving manner and generate a robust machine learning model
for phishing detection. Second, our solution is designed to be
flexible in order to adapt to the novel phishing features introduced
by attackers. Our solution not only allows for incorporating novel
features into the existing machine learning model, but also can
help, to a certain extent, the “unlearning” of existing features that
have become obsolete in current phishing attacks. We evaluated
our approach on a large real-world data collected over a period of
six months. Our results achieve a high true positive rate of 97%,
which is on par with existing state-of-the art centralized solutions.
Importantly, our results demonstrate that, a machine learning
model can incorporate new features while selectively “unlearning”
the older obsolete features.

Index Terms—Phishing detection, Privacy Preserving, Machine
Learning, Adaptive, Collaborative Learning

I. INTRODUCTION

A. Motivation

Phishing attacks on the world-wide web continue to con-

tribute to massive financial losses and sensitive information

leakage [1]. A phishing website clones a legitimate website and

lures users into divulging sensitive information such as pass-

words, identity, and credit card numbers, among others. But,

more than the financial losses, personal information leakage has

far-reaching consequences for the victim of the phishing attack.

Given the impact of these attacks on the safety and security of

‡A reference to the movie “X-Men: Days of the Future Past” (2014, Marvel)

where the X-Men glimpse into the past to save their future.
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users, there is a critical need to deploy robust defenses against

phishing attacks.

Machine learning approaches [1]–[16] have been quite ef-

fective in detecting phishing websites with minimal overhead

on the user web-browsing experience. In general, a machine

learning model works as a classifier to distinguish between

a phishing website and a legitimate website. Therefore, these

approaches require a substantial amount of training data, of both

phishing and legitimate websites, and a set of well formulated

features that help to construct an effective classifier. However,

over the years, phishing attacks have adapted to the machine

learning based defenses by targeting the building blocks of

machine learning defenses, i.e., data and feature manipulation.

Therefore, there is a critical need for designing machine learn-

ing based phishing defenses that are resilient to such adaptive

strategies of the attackers.

B. Problem Statement

The problem of website phishing detection is to determine if

a website is a phishing or a legitimate site based on standard

definitions in literature [17], [18]. The general template of a

phishing detection solution is to first identify a good set of

features that can discriminate between a phishing and legitimate

website and, train a machine learning classifier on these features

using the best possible sample data set available at that time pe-

riod. We focus on the problem of phishing detection wherein the

phishing websites show a progressive adaptation to defenses by

masking, adding, perturbing, or removing features of interest in

successive generations of phishing websites. Specifically, we

address the problem of phishing detection wherein some new

important features are not known upfront at the time of training

the machine learning classifier and/or some existing features are

no longer useful.

C. Limitations of Prior Art

Content-based approaches [1]–[16], [19] perform in-depth

analysis of content to classify phishing websites. Uniform

Resource Locator (URL)-based approaches [11]–[16] analyze

various features based on the target URL such as length of the

URL, page rank of the URL, presence of special characters
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in the URL, IP address instead of host name, DNS features

etc. For instance, these days, the URLs generated by websites

like Google and Amazon, are long and contain many non-

alphabetic characters, which dilute the lexical similarity of

legitimate URLs. Despite their great success, we identified three

key shortcomings of prior work:

• Insufficient Data. Most phishing websites are taken down

within 48-72 hours, making it difficult for any single

security analyst to collect a significant amount of data and

multiple analysts may not be willing to share data. Also,

data from public resources could be noisy.

• New Phishing Features. Attackers keep changing the style

of phishing websites to adapt to the previous generation of

defenses. This creates new features of interest for phishing

detection and need to be considered.

• Dynamic Updates to Machine Learning Models. Once

a machine learning model is deployed, it is difficult to

update it without changing the entire model. Addressing

this challenge is critical to adapt to the strategies of the

phishing attackers.

As a consequence, we emphasize that the key shortcoming of

prior art is the inability to adapt to feature modifications by

the attackers. Research [7], [20] has shown that most existing

classifiers can be ineffective if some or all of the features

originally used for training are made obsolete or redundant.

D. Key Contributions

First contribution is that, our approach is adaptive to changes

in phishing strategies. Our adaptive approach allows for feature

addition and removal from deployed machine learning models.

We illustrate that some phishing features in the past become

obsolete as time passes on data spanning the last three years.

Second contribution is that, we describe an approach to gen-

erate machine learning models in a privacy preserving manner

from disparate data sets, thereby, overcoming the challenges

in data collection. Our approach ensures that multiple parties

have access to the knowledge of multiple data sets without

actually sharing the data sets and are able to build a robust

machine learning model. We show that our approach achieves a

high true-positive rate, for detecting phishing websites, of 97%,

which is the state-of-the-art performance for many existing

centralized solutions.

Our third and final contribution is that, during our investiga-

tion for adaptive features, we identified and engineered several

new features that are not reported in literature thus far. This

makes our approach robust and resilient against known and

possibly future attacks.

II. RELATED WORK

A. Phishing Detection with Standard Data

Cui et al. [7] tried to find similarities between different

attacks during a 10 month study by monitoring around 19000

websites. The study showed that 90% of phishing websites have

similar HTML Document Object Model (DOM) structure and

over 90% of these attacks were actually replicas or variations

of other attacks in the database. Hong et al. [19] created

a data set to make use of the well-known term frequency

inverse document frequency (TF-IDF) algorithm to find the top-

5 important words in a web page and cross-checked using the

Googler search engine. Zhang et al. [3] created a framework

using a Bayesian approach for content-based phishing web

page detection. The model takes into account textual and visual

contents to measure the similarity between the legitimate web

page and a suspicious web page. Miyamoto et al. [21] provide

an overview of nine different machine learning techniques and

analyzed the accuracy of each classifier on the CANTINA

data set [19], reporting a maximum accuracy of 91.34% using

AdaBoost. Xiang et al. [4] proposed a layered anti-phishing

solution with a rich set of features based on the HTML DOM

structure, search engine capabilities, and third-party services.

Marchal et al. [6], [8] propose a client-side detection approach

using proprietary data sets from Intel security. However, their

approach uses over 200+ features for classification, a factor

that needs to be considered when deploying phishing detection

solutions in a client browser. Hossein et al. [22], used domain-

name based features to classify phishing websites with a

positive detection rate of 97%. This model uses less number

of features, but cannot adapt to newer features as standard

statistical classifiers are utilized. In 2015, Verma et al. [13]

described an approach based on textual similarity and frequency

distribution of text characters in URLs. Recently, Rao et al.

[23] proposed a heuristic URL classification technique where

the input to their algorithm is constructed by domain + title

or domain only of the given URL. They achieved an average

positive detection rate of 99.77% for phishing sites. Some

studies ventured into the nature of malicious content in online

social networks. Al-Janabi et al. [14] described a supervised

machine learning classification model to detect the distribution

of malicious content in online social networks (OSNs). A good

survey of phishing detection approaches can be found in [18].

B. Phishing Detection with Evolving Attackers

The attackers have constantly evolved their strategies to

evade phishing detection mechanisms. An illustration is the

use of the “HTTPS” protocol, which was not found in most

phishing websites as shown by Hossein et al. [20], but has

become more prevalent in modern phishing websites. Fernando

et al. [24] have shown that how educating about the good old

URL obfuscation techniques is not as effective an anti-phishing

measure as it was against new URL obfuscation techniques

like “Obfuscating with HTTPS schema” and “Obfuscating

with Internationalized Domain names”. Abuzuraiq et al. [25]

implemented a fuzzy logic algorithm to achieve higher accuracy

but the model becomes less and less accurate as more features

are incorporated in the data set. There has been a rise in extreme

phishing attacks [1] on financial institutions where the phishing

website mimics the legitimate website to an alarming degree.

The high level of noise in such websites is likely to defeat most

content-based machine learning approaches. Mahdi et al. [26]

proposed a framework for dynamic retraining of spam tweets

detection model consisting of two kinds of machine learning

models. The first one is a supervised model that classifies

2021 IEEE Conference on Communications and Network Security (CNS)

228

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on February 15,2022 at 17:06:58 UTC from IEEE Xplore.  Restrictions apply. 



the tweets as spam or not-spam. The second model is an

unsupervised one that collects new tweets, annotates them using

clustering algorithms, and prepares a new feature vector with

a predefined set of 17 features. Once they have a sufficient

collection of new tweets, the first model is retrained on the

newly generated feature vector from the second model. This

approach is semi-adaptive, in that, a model is able to learn new

patterns within the same 17 features, but it cannot learn any new

feature as the number and the name of the features are fixed.

With time attackers learn to evade existing phishing detection

models [7], [20] as certain features become obsolete over time

and do not contribute to the classification.

Addressing the evolution of attacker strategies is an impor-

tant challenge and offers a new direction of research. But, we

make a cautious note that, it may not be feasible to arrive at

a solution that can adapt to any kind of attacker strategy. We

propose a first time approach that attempts to adapt to attacker

strategies by learning and unlearning machine learning features

over time.

III. PROPOSED APPROACH

A. Overview of Proposed Approach

The main goal of our approach is to construct a machine

learning model that can detect a phishing website based on

certain features while having the ability to adapt to newer

features as time progresses. Our approach consists of three

key steps. In the first step of feature engineering, we analyzed

some interesting features of phishing websites over the last two

years and discovered some changes in the phishing strategies.

Our analysis has identified new features that are useful for

phishing detection. In the second step of machine learning, we

apply the collaborative learning approach described in [27] to

generate the machine learning model. In this approach, multiple

parties holding different data sets participate in a protocol for

constructing a common machine learning model. Our choice of

collaborative learning addresses the key challenge in phishing

detection, i.e., the lack of sufficient data, as multiple parties

contribute to the learning process with their disparate data sets.

The final step of our approach is the design of a feature vector

that allows for “addition” or “removal” of features. The addition

or removal of a feature is followed by retraining phase where

the machine learning model is updated with new data from

the new feature. The combination of collaborative learning

and feature addition and removal, provide the important ability

to adapt to evolving phishing strategies. This is the spirit of

our XPhish framework wherein the machine learning model

attempts to retain the past while attempting to view the future.

B. Feature Engineering and Validation

As much as feasible, our feature design attempts to be

content-agnostic, i.e., the feature design attempts to model the

principles of phishing attacks and reduce the dependence of the

features on specific data. Our feature set consists of two types of

features: binary, i.e., the feature value is 0 or 1, and non-binary,

i.e., the feature is real-valued. To validate the intuition behind

each non-binary feature, we tested the empirical cumulative

Table I
BINARY FEATURE DISTRIBUTION

Feature Legitimate Phishing

HTTPS Present 0.97 0.55

Non-alphabetical Characters 0.02 0.13

Copyright Symbol present 1 0.19

Copyright year (2020/2021) 0.85 0.10

SSL Name and Domain Match 0.79 0.40

SSL Name and Copyright Match 0.65 0.01

Copyright-Domain Match 0.78 0.02

Suspicious Action attribute 0.006 0.18

Suspicious URL 0.06 0.35

distribution function (ECDF) of the feature for 2000 phishing

websites against 2000 legitimate websites. For binary features,

we use our entire collected data of 40000 phishing and 40000

legitimate websites to show the distribution of the features. We

also indicate if the features are “New”, meaning designed by

us, or “Existing”, meaning that other researchers [3], [4], [6],

[22], [28], [29] have designed it. In the following, we describe

the existing and new features, identified by us, in this work.

1) Feature 1 (Existing): Link Ratio in BODY: As described

in [4], [22], this feature is defined as the ratio of the number of

hyper-links pointing to the same domain to the total number of

hyper-links on the web page. This feature is content-agnostic as

the ratio can computed for any phishing website that exhibits

this behavior. Figure 1(b), shows the ECDF of this feature,

of the raw ratios, with sufficient separation between the two

distributions.

2) Feature 2 (Existing): Frequency of Domain Name: As

described in [22], this feature counts the number of times

the domain name appears as a word in the visible text of

the web page. This is a key feature that captures the visual

relationship of the domain name to the web page. Note that, for

classification purpose, we converted this feature into a binary

feature, i.e., if the domain name does not appear in the web

page, we set it to 0 and if it appears, we set it to 1.

3) Feature 3 (Existing): HTTPS Present: Most legitimate

websites use SSL certificates and operate over HTTPS protocol.

Therefore, if a website uses HTTPS, the feature value is 1 and

if not, it is 0. Table I summarizes the percentage distribution of

the binary features in the sample data set. Recently, phishing

websites are using HTTPS as well and this explains the

relatively high distribution.

4) Feature 4 (Existing): Non-alphabetical Characters in

Domain Name: Attackers use non-alphabetical characters, like

numbers or hyphen, to generate newer phishing domain names,

which are very similar to legitimate domain names. If the

domain name has any non-alphabetic character, this feature is

set to 1, and 0 otherwise.

5) Feature 5 (Existing): Presence of Copyright Symbol:

The copyright symbol is a mark of trust for the end user.

Many legitimate websites use the copyright logo to indicate the

trademark ownership of their organization name. If a copyright

symbol is present in the web page, then this feature evaluates

to 1, otherwise 0.

2021 IEEE Conference on Communications and Network Security (CNS)

229

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on February 15,2022 at 17:06:58 UTC from IEEE Xplore.  Restrictions apply. 



(a) Link Ratio in BODY (b) Domain Name Frequency

Figure 1. ECDF Plots of Link Ratio in BODY and Domain Name Frequency

6) Feature 6 (New): The year along with Copyright Symbol:

For many, the copyright date is seen as a way to determine if

the site is maintained or not. Some websites have just the most

recent year mentioned alongside the copyright symbol while

some others have a range of years from when they got first

published. The intuition behind this is that attackers may use

same old templates to create a fake web page or even if they

do modify the look of the page, they will not bother to check

the copyright information for a temporal feature. This feature

evaluates to 1 if the copyright year is either 2020 or 2021,

otherwise 0.

7) Feature 7 (Existing): Domain Name with Copyright Logo:

Usually, the domain name is placed before or after the copyright

logo for such websites. To generate this feature, we considered

all the characters before and after the copyright logo, removed

the white spaces, and checked for the presence of the domain

name in the resulting string. We found that most of the phishing

websites did not place their actual domain names along with

the copyright logo. As shown in Table I, our intuition proved

right, only 2% of the phishing websites were using this feature,

but over 78% of legitimate websites had this feature.

8) Feature 8 (New): SSL Name and Copyright Name Match:

Secure-Sockets Layer (SSL) Name is the value present in the

Issued to or Common name field of the SSL certificate issued

to the website owner. Many legitimate websites’ SSL name

matched with the organization’s name present alongside the

copyright symbol. The value of this feature is set to 1 if the

SSL name and the name at the copyright symbol matches,

otherwise, 0. As shown in Table I, our intuition proved right,

only 1% of the phishing websites use this feature, but over 65%

of legitimate websites have this feature.

9) Feature 9 (New): SSL Name and Domain Name Match:

The SSL certificates include the domain name in the “issued

to” field of the SSL/TLS certificate to which the certificate is

issued to. SSL Common name mismatch arises when the SSL

name does not match with the domain of the website in the

address bar of the browser. This feature is set to 1 if there is a

match, otherwise, 0.

10) Feature 10 (New): Suspicious Action attribute: Usually,

phishing websites try to steal the user credentials through a

form on the web page. These forms are then submitted to

the desired location, generally, through action attribute. Many

of phishing websites that had the form element, their action

attribute had the following pattern: filename.extension. For

example: login.php. Whereas, legitimate websites usually link

to the URL where the form is submitted for processing. The

value for this feature is set to 1 if there is a suspicious action

attribute, otherwise 0.

11) Feature 11 (New): Suspicious URL: In our data set, a

large number of phishing websites’ URLs end with the page

extension like .html or .php. If any URL has such pattern, then

this feature is set to 1, otherwise, it is set to 0. Table I shows

that only 0.6% of legitimate websites have this feature while

over 35% of phishing websites have suspicious URLs.

C. Collaborative Training Framework

Shokri et al. [27] proposed a distributed training technique,

based on selective stochastic gradient descent and differential

privacy. This framework form the basis of our machine learn-

ing model for phishing detection. The collaborative training

framework assumes that there are N-participants in the training

process. Each participant can be referred to as a local client

or just participant. A common neural network architecture is

agreed in advance by all of the participants. The parameter

server is responsible for managing a list of global parameters

which essentially represents the common model trained in

collaboration by all the local clients.

Initially, each local participant i connects to the global

parameter server and receives the structure of a neural network

model, which will be the local model for this client. Each client

maintains a list of local parameters, i.e., weight-gradients and

bias-gradients, which it can either initialize or leave them as it

is. For participant i, this list is named as w(i).

Then, the local training begins where each participant trains

the neural network on its own private data using an optimization

algorithm such as Stochastic Gradient Descent (SGD) [27]. The

training continues for many epochs until the required condition

to halt the training is met. The local training is independent

of any other participant in the process. They do not impact

each other’s models directly, rather indirectly via the parameter

server. Following is the algorithmic process of local training on

participant’s side.

1) Initialize the model parameters and the learning rate α.

2) Repeat until the set number of epochs or the minimum

error is achieved:
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• After each epoch, compute the gradient vector

∆w(i) on all the weights of the neural network as:

d∆w(i) = wj − wi, where wj are the weights after

training and wi are the weights before the training.

• Select and upload Θu X
∣

∣w(i)
∣

∣ most significant

gradients to the server. These are the Θu largest

values of the weight-gradients, from each layer of

the neural network.

• Download the parameters from the server and replace

the corresponding local parameters in the client’s

model.

• Run the next epoch of training on the model with the

replaced parameters on the local data set and update

the local parameters w(i) accordingly.

Each participant sorts the values inside the weight-gradient

vector. Then, exactly Θu most significant values are picked

from each layer, which contribute more towards the gradient

descent, and are shared with the other participants.

The parameter server manages the global parameter vector

∆wg , of the common global model being trained by the

participants, using the process shown here.

1) Initialize the global parameters w(g).

2) When a participant uploads the weight-gradients w(i):

Update the global parameters by adding the correspond-

ing values of w(i) and w(g) as: ∆wg = ∆wg + ∆wj ,

where the value of uploaded gradient for jth parameter

is ∆wg .

3) When a participant downloads the parameters w(i): Send

all the parameters in the vector w(g) to the participant.

D. Adaptive Learning: The Null Feature Vector

Our approach for adaptive learning is to make the fea-

ture vector flexible in a way to incorporate the feature ad-

dition and removal without changing the architecture of the

learning model. Let the feature vector be denoted as: F =

{f1, f2, · · · , fmax} where max is the maximum length of F .

Now, out of these features, at any give time only a few features

might be relevant. Therefore, during the training process, the

relevant features will have non-zero values and the remaining

features will have zero values (or “null”) values. Going further,

if over time, a feature becomes less effective or useless for the

classification purpose, instead of designing and training a new

model, we render that feature column in the feature vector, as

the Null feature.

Feature Removal We show an illustrative usage of null feature

vector in the learning process in Figure 2. This figure shows

how features can be removed. In the first phase, a model is

trained on with a feature vector containing all relevant features,

which can be less than Max features. Then, before the second

phase, two normal features are converted to null features by

replacing their original value with ’0’, the cells shown in red.

Next, the existing model is trained on this updated feature set.

Feature Addition. Now, if any new features are required to

be added into the feature vector, we replace any of the null

feature with the new feature values shown in the dark green

cell. We note that, while our approach of feature removal or

addition may not be formally sound, we have been able to

validate experimentally that it achieves the desired results as

required for an adaptive phishing detection scheme.

IV. PERFORMANCE EVALUATION

A. Experimental Methodology

We implemented our approach using the PyTorch library in

Python 3.8 on a desktop running Mint OS with Intel corer

i5-5200U CPU© 2.7 GHz processor with 8 GB RAM. We

have used multi-layer perceptron (MLP) as the common neural

network architecture for every participant. MLPs are feed-

forward neural network architectures in which neurons in each

layer are fully connected to the neurons in the next layer. The

neural network has 3 hidden layers and 1 output layer. The

number of input neurons is 11, corresponding to the number

of features. Number of neurons in 1st, 2nd, and 3rd hidden

layers are 8, 10, and 32, respectively. The rectified linear

activation function (ReLU) has been used on the hidden layers

and the Sigmoid activation function on the output layer. In

all the experiments, the batch size is 256 and learning rate

is 0.01 with the Binary Cross Entropy (BCELoss) as the loss

function and SGD as the optimization algorithm. The weights

are initialized randomly but any initialization scheme can be

used by participants. During the local training, the participants

communicate asynchronously with the global parameter server.

Once the participant’s local model is updated with new weights

downloaded from the server, the next training epoch starts. In

all the experiments, the value of θ is set to 0.5.

We conducted four sets of experiments to assess the col-

laborative and adaptive performance of our model. The first

set of experiments were conducted by training the model

on all 11 features directly. The second set of experiments

were conducted by incrementally adding a new feature in

the data set. The third set of experiments were conducted

by removing a feature from the data set. The fourth set of

experiments included simultaneous addition and removal of a

feature from the data set. During classification, we denote the

phishing websites correctly classified by, true positive (TP) and

incorrectly classified as legitimate sites by, false negatives (FN),

and the legitimate sites correctly classified by, true negatives

(TN) and incorrectly classified as phishing websites by, false

positive (FP). We report standard classification metrics such as,

positive predictive value, PPV = TP
TP+FP

; true positive rate,

TPR = TP
TP+FN

; accuracy, ACC = TP+FN
TP+FP+FN+TN

and

F-score, F − score = 2TP
2TP+FP+FN

.

B. Data Sets

For the list of legitimate websites, we obtained a to-

tal of 38500 websites from the majestic.com and as-

sumed them as legitimate. For the phishing websites, we

got a total 40000 phishing websites from PhishTank.com,

OpenPhish.com and isitphishing.com.

C. Experiment 1: Performance on Collaborative Learning

In this set of experiments, we compare the performance of

collaboratively trained model in a 4-participant system with a

model trained in centralized way where whole data is pooled
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Figure 2. Training with null features

(a) Centralized training (b) Collaborative training

Figure 3. Comparison of Collaborative learning with Centralized learning

(a) 50% sharing (b) 100% sharing

Figure 4. Performance on varying the fraction of shared weights

at one location for training. The results are shown in Figure 3.

We observe that even with 50% of weight-gradients sharing, our

model’s average performance is really close to the other one.

For example, the average TPR of collaboratively trained model

is 96.8% while the other model achieved a TPR of 97.25%.

In the above experiments, we kept the value of Θu as 0.5.

Figure 4 shows the performance comparison for a 4-client

system in two scenarios: first, when Θu is set to 0.5, and

second, when Θu is set to 1, i.e., all the weight-gradients are

shared among the participants. We observe a slight increase

in the average performance when all the weights are shared.

For example, the average value of TPR jumped from 96.8%

to 97.03%. This shows that even when only a fraction of

parameters are shared, we get high-performing models as most

significant parameters from each layer are getting shared among

participants.

D. Experiment 2: Performance on adding new features

We designed four different experiments to evaluate the

performance of the model when new features are added to

the data set. Each one was carried out in 3 different collab-

orative environments; first with 2 participants, second with 4

participants, and third with 8 participants. Data was divided

uniformly, i.e., equal sharing among different participants. We

have performed experiments with unbalanced data sets as well

with similar results, In the first experiment, we selected 6

features to train the model. The values for remaining 5 features

were kept as 0 (value). Once the training is completed, each

client can disconnect from the server and test the model on

their own private data set. In the second experiment, to show

the adaptive nature of training, we included a new feature in

the data set by restoring a previously null feature’s original

values. Then, the trained model from the first experiment was

collaboratively trained again on this new data set. Similarly, in

the third experiment, we included two more features in the data

set and trained the model from second experiment, on this new

data set. In the fourth experiment, we collaboratively trained

the previous model on all the 11 features. All experiments were

repeated in 5 trials for each collaborative scenario, i.e., 2, 4,
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Figure 5. Performance of collaborative model with 6 normal features and 5 null features

Figure 6. A feature is added by replacing one null feature; 7 normal and 4 null features.

Figure 7. Two more features are added; 9 normal and 2 null features

Figure 8. PPV, TPR and F-Score on training on all 11 features.

and 8 participants. To assess the overall performance, we took

average and maximum of the aforementioned metrics across

individual client’s model performance in each trial.

Results when new features are added: The results show

that our model is able to learn the new features using our

null features approach as the performance gets better when a

new feature is added to the data set. We show the results in

Figures 5, 6, 7, and 8. In all the experiments, all three metrics,

PPV, TPR and F-score (accuracy results were similar), were

averaging around 96 − 97%, and the maximum values were

over 97%. These values demonstrate the proof-of-concept of

the proposed adaptive feature vector notion and show that the

phishing detection model can be updated periodically, subject

to the maximum length of the feature vector The results are

for epochs up to 50; beyond this, we can still manage to get a

slightly higher performance parameters.

E. Experiment 3: Performance for Feature Removal

The aim for this experiment is to show that our model can

adapt its learning on a data set in which a feature, which

was previously present, is now removed. For this purpose, we

first trained our model with all the features in a 2-participant

environment where each participant had 20000 samples of
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(a) PPV (b) TPR (c) F-Score

Figure 9. Unlearning performance of collaboratively trained model

training data. Then we replaced the values of the feature

HTTPS with 0 (thus, making it a null feature). After that,

we collaboratively trained the previous model on this new and

modified data set. This experiment corresponds to the scenario

where a feature becomes obsolete after some time, and no

longer helps in learning. The decision to remove HTTPS feature

was taken mainly due to following reasons:

• Statistics [30] show that HTTPS is no longer a strong

classification feature for phishing websites.

• In our data set as well, a lot of phishing websites have

HTTPS in the URL.

To assess the adaptive performance in this set of experiments,

we compared the results of the first model that was trained

on data set without the HTTPS feature, to that of the second

model, which was first trained on all the features and then,

trained again on data set without “HTTPS” feature (10 features

only).

Results when a feature is removed: The results show that

our model is able to unlearn the feature that was removed from

the data set. The results were collected for test data consisting

of 1000, 2000, 3000, 4000, and 10000 data samples. We show

the results in Figure 9. For each of the performance parameters,

we compared the average results of aforementioned models for

varying sized test data. Furthermore, it shows that there isn’t

any significant drop in the performance of the model when it

unlearns a not-so-helpful feature. Instead, we noticed a slight

improvement in PPV, TPR, and F-score after the unlearning,

in some cases. The maximum values were above 97% and the

average remained around 96− 97%.

F. Experiment 4: Performance on simultaneous addition and

removal of a feature

Finally, both addition and removal of a feature was performed

simultaneously in the data set. For this purpose, we first trained

a model on 10 features only, in 2-participant environment with

20k training data each. When the training was completed, we

made the following changes in the data set. Added the feature

“copyright year” and removed the “https” feature due to the

reasons stated in the above section. After that, the previous

model was collaboratively trained on this modified data set. To

assess the performance of our model on simultaneous addition

and removal of features, we compared the results of our final

model (Model2) with the model (Model1) that was trained with

sequential modification of data set, i.e., the model was first

trained on 10 features data set, then on data set with “copyright

year” feature added, and finally, on the data set with the “https”

feature removed.

Results when simultaneous addition and removal of features

is performed. The results were collected for test data consist-

ing of 1000, 2000, 3000, 4000, and 10000 samples. They show

that the performance of Model1 and Model2 is almost similar

in every case as it should be. We show the results in Figure

10. For each of the performance parameters, we compared

the average results of Model1 and Model2 for varying sized

test data. The metrics averaged between 95 − 97% for both

models, which demonstrates that the model is able to add and

remove features without noticeable difference in performance.

Some outliers and corner-cases might exist and this will require

deeper exploration of newer data sets in the future.

V. CONCLUSION

In this work, for the first time, we describe a collaborative

phishing detection approach that has the ability to adapt to

evolving phishing strategies. Our approach uses a combination

of collaborative learning with a flexible feature vector design

to achieve this goal. We validated our experiments on data

collected over the last 6 months and dating back up to two

years. We also discover and engineer new phishing features that

were hitherto unexplored in this domain. Our model achieves

a high TPR of 97%, which is comparable to the state-of-the-

art centralized phishing detection approaches. However, as we

mentioned in a cautionary note, our approach is only the first

attempt and adapting to phishing strategies remains a non-trivial

challenge that needs further research and exploration.
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