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Abstract—Malicious actors often use phishing attacks to com-
promise legitimate users’ credentials. Machine learning is a
promising approach for phishing detection. While the accuracy of
machine learning algorithms is often dependent on the training
data, very little attack data for training is available. We propose
an approach for augmenting existing datasets that can be used by
machine learning algorithms. We use an Adversarial Autoencoder
(AAE) to generate samples that mimic the phishing websites and
provide metrics to assess the quality of the generated samples.
We test these samples against models trained with real-world
data. Some of generated samples are able to evade existing
detection model. We then use a portion of these samples in
training. The new machine learning models are more robust and
have higher accuracy. In other words, real-world phishing site
data augmented with AAE synthesized data used for training the
model is more effective for phishing detection.

I. INTRODUCTION

Phishing uses social engineering and technology to steal
user’s identity [1] and sensitive information [2]. Commercial
and government sectors have seen a proliferation of these
attacks in recent years. Federal Bureau of Investigation (FBI)
estimates $12.5 billion in financial losses world wide from
78,617 reported incidents between October 2013 to May 2018
[3], [4].

Khonji et al. [5] provide the most comprehensive definition
that covers all types of phishing attacks. Attackers mimic
legitimate electronic communications and websites and lure
legitimate users in revealing their credentials. We focus on
detecting phishing websites. Supervised machine learning [6]
appears to be a promising technique for phishing detection [7]–
[10]. However, this technique requires a priori labeled data in
the training phase. This trained model is then used to classify
real-world data [11] into genuine and phishing websites.

Supervised machine learning algorithms need a sufficiently
large labeled dataset for training the model. However, obtain-
ing such a dataset is not easy. Das et al. [12] studied more than
300 papers published during 2010-2018 and recognized four
issues of availability, diversity, recency, and quality related to
existing phishing datasets in the literature. In this study, we

focus on the problem of low volume phishing datasets obtained
from the real-world. Collecting phishing data and labeling
them is hard and labor-intensive [13]. Gathering data in an
adversarial context such as phishing poses unique challenges.
In addition, researchers are often reluctant to share their
datasets related to cyber-security problems due to concerns
such as privacy and liability. Only 10% of researchers shared
their dataset publicly for a similar security networking problem
[14].

There are repositories that collect the link to phishing web-
sites like PhishTank.com or OpenPhish.com. However,
such websites only provide a list of links. Obtaining the links,
extracting the features, and converting them into a labeled
dataset are complex tasks requiring expertise.

Adversaries actively try to bypass the detection algorithm
or corrupt it. For example, an attacker can obfuscate code
to invalidate the feature extraction process. Moreover, the
low volume of existing phishing datasets [12] may cause the
learning classifier to not converge and the performance to be
inconsistent. In short, the training model may be imperfect in
the absence of adequate data. We focus on how to increase
the size of datasets while preserving the characteristics of
existing data but without doing actual data collection. Such
an approach is essential when data is unavailable or when the
data collection process is laborious and infeasible.

A. Proposed Approach

We model an attacker, define his goals, and discuss his
capabilities. We develop an adversarial autoencoder (AAE)
network to mimic websites that are in-tune with the capa-
bilities and characteristics of actual attackers. We check the
similarity between synthesized samples and phishing samples
at the feature and instance level to make sure the synthesized
samples following same characteristics as real samples. This
is needed to prove the validity of our synthesized samples.

We use four publicly available datasets developed by other
researchers. We begin by training the learning models for each
of those datasets. Our results are close to the results that have



been reported by the authors of the datasets. This validates the
ability of our learning model to accurately detect the relation
between the features and to discriminate phishing samples
from the legitimate ones. In a separate experiment, we show
that inadequate number of samples can negatively affect the
learning scores. We then test if synthesized samples can cir-
cumvent the trained model, and show that a significant number
of new synthesized samples can bypass existing models. This
shows that the learning models are prone to exploratory attacks
[15].

Subsequently, we demonstrate that by injecting a small
portion of newly synthesized samples into the training phase
results in more robust learning algorithms that are more resis-
tant to exploratory attacks while also providing better accuracy
in that it can increase the classifier’s performance with regards
to detecting phishing as well as legitimate websites.

We show our proposed sample generation approach is useful
on multiple counts. First, it obviates the need for data collec-
tion. Data may be unavailable or the data collection process
may be infeasible for real-world attacks. Second, adding
synthesized samples leads to a more precise classifier for
phishing samples. Third, injecting these synthesized samples
to training data generates more robust classifiers which are
resistant to data poisoning attacks.

B. Key Contributions Approach

Our key contributions are as follows:
• As we demonstrate that the existing datasets lack a suf-

ficient volume of samples for training phishing detection
algorithms, we present an AAE (Adversarial Autoen-
coder) model to synthesize phishing data that mimic real
phishing samples to enhance the training dataset.

• The proposed data generation method further widens
opportunities in other research contexts that suffers from
the lack of data for training models or rigorous analysis.

• We show that the actual samples and synthesized samples
via AAE are similar enough in terms of two levels, i.e.,
feature and instance level. At the feature level, we use
marginal distribution combined by calculating Euclidean
distance. At the instance level, we clustered phishing
samples and tested synthesized samples with that model.

• We demonstrate that supplementing such datasets with
adversarial synthetic data can significantly enhance the
effectiveness of detection algorithms. We show injecting
the synthesized samples into the training set will increase
the detection rate of phishing algorithms. In addition,
we show the vulnerability of the existing model in that
they cannot label many of these new synthesized samples
correctly.

The rest of the paper is organized as follows. In Section II,
we describe the various existing phishing detection algorithms
that use machine learning. We also provide some background
on generative networks. In Section III, we model the attacker
and describe the construction of synthesized samples using
generative networks. In Section IV, we create our experimental
configuration and explain the results of our experiments. In

Section V, we conclude the paper and discuss some future
work.

II. RELATED WORK

Machine learning algorithms are well suited for phishing
detection as they can assimilate common attack patterns such
as hidden fields, keywords, and page layouts across multiple
phishing data instances and create learning models that can
detect whether a given website is genuine or phishing. In
the prior machine learning approaches [7]–[10], [16], [17],
researchers engineered novel sets of features from diverse
perspectives using public datasets or their own generated
datasets. The models were trained on phishing and legitimate
datasets. These models were then used to predict whether
unknown datasets are genuine or phishing.

Niakanlahiji et al. [7] introduced PhishMon, a scalable
feature-rich framework with a series of new and existing fea-
tures derived from HTTP responses, SSL certificates, HTML
documents, and JavaScript files. It does not rely on third-
party services to extract features and is language agnostic and
detects phishing instances in real-time. The authors reported
accuracy of 95% on their datasets.

Zhou et al. [18] extracted 154 features based on the content
of a webpage merging with four time-based, two search-
based, and 11 heuristic features to create a labeled dataset.
They created a balanced dataset with 8180 instances. Zhou
et al.compared Random Tree as the best performing classifier
among other classifiers and achieved precision of 99.4% and
0.1% false positive rate.

Mao et al. [9] studied visual similarity of phishing and
legitimate websites by comparing Cascading Style Sheets
(CSS) using an automated process. They proposed a learning-
based aggregation analysis mechanism that can distinguish
phishing websites from legitimate ones.

Detecting phishing instances by analyzing the URL of
phishing websites have been widely studied in the literature.
Sahinguz et al. [8] proposed a set of natural language pro-
cessing based features on URL of the websites and ran seven
different classification algorithms to detect phishing websites.
This study is language independent and can detect phishing
websites in real-time without needing third-party services.
They achieve a 97.98% accuracy rate for detecting phishing
URLs.

Recently, Hong et al. [16] focused on solving the phishing
problem by only considering the URL of the website and
collecting a handful of lexical features by surveying the
literature and combining them with the blacklisted domain.
The results show the F-1 scores of 0.84.

Jain et al. [10] extracted 19 different features from the
URL and source code of websites to distinguish phishing
websites from legitimate ones. The features are extracted from
the client-side and do not rely on third-party services and
achieved a 99.39% true positive rate and the overall accuracy
was 99.09%.

Patil et al. [17] surveyed three approaches for phishing
detection, including analyzing URL features, checking to host



the website, and visual appearance-based analysis for checking
the genuineness of the website.

While machine learning approaches have demonstrated ex-
cellent results for detecting phishing websites, the evaluated
dataset’s quality is an important factor.

Shirazi et al. [19] observed datasets used in the literature
are inadvertently biased with respect to the features based on
the website URL or content. Moreover, some of the features
may become obsolete with time or as new attacks emerge.
Sometimes the authors extracted features for the first page of
legitimate websites, not the other pages. A machine learning
algorithm will be useful if trained on enough data samples, but
there is not a simple way to estimate the needed dataset size.
The right size is related to the complexity of the problem and
the complexity of the learning algorithm. This could be seen
as a type of sample size determination (SSD) that evaluates
the needed sample size in a specific problem.

For example, Figueroa et al. described a sample size pre-
diction algorithm that conducted weighted fitting of learning
curves in an active learning algorithm [20]. Active learning
systems attempt to minimize the number of required labeled
data and maximize the performance of the model by asking
queries in the form of unlabeled instances to be marked by
another agent such as the domain expert [21].

Small datasets often times create inaccurate learning mod-
els. Thus, the right size data set is critically important. The
data gathering and labeling are challenging and often times
expensive operations. Getting enough data may not be possible
in many cases, especially in the cyber-security context. To
address this challenge, many data augmentation algorithms
have been proposed and used in the literature [22]–[25].

Shirazi et al. [22] used an adversarial algorithm to generate
new synthesized samples. It increased the size of the dataset
and demonstrated how these samples can evade the classifier.
Our approach improves this study in two ways. Shirazi et
al. used a heuristic algorithm to generate samples by feature
manipulation. Our current AAE network is capable of generat-
ing more sophisticated samples with a well-studied algorithm
which ensures that the sample matches real-world phishing
data. Shirazi et al. do not solve the problem of exploratory
attacks. In our current work, we demonstrate how to train the
model to make it resilient to exploratory attacks.

Other domains also need a good volume of high quality
data. Scenarios involving social analytics [26]–[28], privacy
[29], and health informatics are some areas that face the
issue of limited data availability and data incompleteness.
Data collection and maintenance are challenging because of
data privacy and confidentiality issues. Behavioral and social
network data are inherently sparse and incomplete because
sometimes the behavioral indicators are not shown or recorded
[30]. Muramudalige et al. [31] proposed an adversarial data
generation technique using sparse, incomplete, and small train-
ing samples. The method was validated via a domestic radi-
calization dataset which was a small and incomplete dataset.

Goodfellow et al. [32] proposed Generative Adversarial
Networks (GAN) use for data generation without requiring

extensive problem-specific theoretical foundation or empirical
verification [33]. The original GAN architecture [32] is ca-
pable of capturing the exact distribution of continuous and
complete data but cannot be used for learning the distribution
of discrete variables [34]. The critical need to capture data
distribution with discrete features in diverse application do-
mains such as phishing, medical, crime data, etc. was fulfilled
by Goodfellow. Makhzani et al. [35] proposed the Adversarial
Autoencoder (AAE), which is a probabilistic autoencoder that
uses the GAN framework as a variational inference algorithm
for both discrete and continuous latent variables. Choi et
al. [34] also focused on learning the distribution of discrete
features, such as diagnosis or medication codes, using a
combination of an autoencoder and the adversarial framework.

III. OUR APPROACH

We now explain how we used an AAE to generate synthe-
sized samples of phishing instances. We begin by modeling
an attacker and then discuss how to get data that mimics the
one that may be produced by him taking into account his
capabilities.

A. Threat Model

Shirazi et al. [22] modeled the attacker based on attackers’
goal, knowledge, and influence in the context of phishing
detection by a machine learning algorithm.
Attacker’s Goal In the context of the phishing problem, we

assume an attacker will attack the integrity of the system by
forcing the system to label a phishing instance as legitimate.
Attacker’s Knowledge We assume an attacker only knows

about features of the phishing instances but not the learning
model parameters. This could be considered a realistic assump-
tion as an attacker may have access to the definition of existing
datasets but not the specific implementation of a classifier. The
adversary that has been modeled in [22] does not have any
information about other system parameters like the algorithms
that have been used, dataset instances, or learning parameters.
The purpose of [22] was to show the vulnerabilities of existing
learning models against adversarial sampling attacks and a
feature manipulation approach was used. However, in our
current approach, we focus on synthesizing new phishing
samples to address existing limitations of dataset generation.
Attacker’s Influence Ling et al. [36] defined two types of

attacks: (a) Causative Attacks and (b) Exploratory Attacks.
In Causative Attacks, the attacker influences the training

data and can poison the training set with mislabeled samples
to affect the training phase. The attacker can poison a portion
of data or whole training set depending on what he can access.

In Exploratory Attacks, the attacker targets the integrity of
the system in which the attempts are toward circumventing
the learning mechanism to exploit blind spots in the learning
model. In this attack, the attacker crafts intrusions so to evade
the classifier without direct influence. Our goal is to design a
system that is resilient against exploratory attacks.



Fig. 1: The architecture of our proposed approach. It consists of an adversarial autoencoder that generates synthesized data
using phishing data. The top row depicts the ordinary autoencoder that reconstructs the data from the latent code z. The next
row depicts the discriminative network that predicts whether the samples emerge from the hidden code of the autoencoder q(z)
or the user-defined prior distribution p(z) [35]. pd(x) denotes the data distribution. q(z|x) and p(x|z) denote the encoding and
decoding distributions respectively. After the data generation, a machine learning classifier (fc) described in Subsection III-C
is used to determine whether the synthesized samples belong to legitimate or phishing sites.

B. Adversarial Autoencoder (AAE) for Synthesized Data Gen-
eration

We use the adversarial autoencoder for synthesizing samples
that mimic the phishing websites. The adversarial autoencoder
is capable of generating both continuous and discrete data
distributions. Therefore, AAE is a perfect fit for generating
discrete feature sets in phishing samples. The architecture of
the adversarial autoencoder is shown in Figure 1. The autoen-
coder derives a compressed knowledge representation of the
original input, which reconstructs the same data distribution.

q(z) =

∫
x

q(z|x)pd(x)dx (1)

An aggregated posterior distribution of q(z) on the latent code
is defined with the encoding function q(z|x) and the data
distribution pd(x) as shown in Eq. 1 where x denotes real
phishing dataset.

The AAE’s operating principle is that the autoencoder seeks
to minimize the reconstruction error while the adversarial net-
work attempts to minimize the adversarial cost. Reconstruction
phase and regularization phase are two simultaneous phases
that arise during training. In the reconstruction phase, the
autoencoder’s data reconstruction error is minimized, often
referred to as the loss. The regularization phase relates to
the adversarial component of the network. It minimizes the
adversarial cost to fool the discriminator by maximally regu-
larizing an aggregated posterior distribution q(z) to the prior

p(z) distribution.
The simultaneous training process allows the discriminative

adversarial network into thinking that the samples from hidden
code q(z) come from the prior distribution p(z) [35]. In this
work, a normal distribution is exploited as the arbitrary previ-
ous p(z). After the training process, the adversarial network
synthesizes samples similar to the phishing samples through
the prior distribution p(z).

We train generative models for each dataset because each
has different sets of distinct features. The feature values are
varied in many value ranges. Thus, the values are normalized
between -1 and 1 before feeding to the encoder and are
denormalized after data generation from the decoder.

At the end of this step, we will have two datasets: Original
Dataset, which has been used to generate adversarial samples
and a new Synthesized Dataset that consists of new synthe-
sized phishing samples that mimic phishing websites.

We fed the model with only phishing samples so all of
the synthesized samples are phishing. The synthesized dataset
has the characteristics of phishing datasets generated by real-
world attackers. We combine these two datasets to feed them
into a classification algorithm that can distinguish phishing
samples from the legitimate ones. This classifier is unaware of
whether the samples are synthesized, which means generated
by adversarial, or real, which means we got them from an
existing dataset. The instances are labeled as legitimate or
phishing and classifier will predict them accordingly.



TABLE I: Definition of performance metrics

Score Formula Description
TPR NP→P

NP
correctly classified phishing

PPV NP→P
NP→P+NL→P

correctly over total predicted
phishing

f1
2 ∗ TPR∗PPV

TPR+PPV

harmonic average of
TPR and PPV

ACC NL→L+NP→P
NL+NP

classified correctly in the dataset

The samples that have been generated by that adversarial
network will be injected into our training set with correct
labels.

The use of synthesized samples solves two purposes at the
same time. First, we increase the dataset size and alleviate the
problem of data unavailability and data collection. Second, it
helps to make the existing learning algorithm resilient against
adversarial attacks. We evaluate our hypothesis in Section IV
in an experimental study.

C. Machine Learning Classifier

For training purposes, we use six different classifiers avail-
able in the Scikit-learn tool [37]. The classifiers that we use
are Decision Tree (DT), Gradient Boosting (GB), k-Nearest
Neighbors (KNN), Random Forest (RF), and Support Vector
Machine with two kernels: Linear (SVM(L)) and Gaussian
(SVM(G)) kernel. We will use scores defined in Table I to
compare them.

IV. EXPERIMENTS AND EVALUATION

A. Used Datasets

We use four publicly available phishing datasets on the
Internet, and the details of these datasets are given below.
Dataset 1: DS-1: Shirazi et al. [19] published their unbiased
phishing dataset in 2018. Each instance in this dataset has
eight features, and all are related to the domain name of the
websites.
Dataset 2: DS-2: Rami et al. [38] created this dataset in 2012
and shared it with UCI machine learning repository [39]. This
set includes 30 features that are divided into five categories:
URL based, abnormal based, HTML-based, JavaScript based,
and domain-name based features.
Dataset 3: DS-3: In 2014, Abdelhamid et al. [40] shared their
dataset on UCI machine learning repository [39]. The features
include HTML content-based features and some features that
require third-party services inquiries, such as DNS servers that
perform domain-name age lookup.
Dataset 4: DS-4: This dataset is the most recent, from the year
2018, that is publicly available and has been created by Tan et
al. [41] and was published on Mendeley 1 dataset library. This
dataset includes 48 features, a combination of URL-based and
HTML-based features.

Table II summarizes the number of instances, features, and
the portion of legitimate vs. phishing instances in each dataset.

1https://data.mendeley.com/

TABLE II: Number of instances, features, and portion of
legitimate and phishing websites in each dataset

Dataset Data shape (#) Instances (%)
Size Features Legitimate Phishing

DS-1 2210 7 44.71 55.29
DS-2 11055 30 55.69 44.31
DS-3 1250 9 43.84 56.16
DS-4 10000 48 50.0 50.0

Fig. 2: Trend of precision and recall vs. different training set
sizes in DS-4.

B. Performance of the Model

In the first experiment, we checked the performance of
the model without considering any synthesized samples. The
necessity of this step is to show that our learning model
can distinguish between legitimate and phishing instances. We
used six different machine learning classifiers listed in Sec-
tion III. We used 80% of data for training purposes and 20%
for testing in five-fold cross-validation. We ran all experiments
ten times and reported mean and standard deviation for each
dataset. The results are reported in Table III.

GB gives best F-1 scores for three datasets of DS-1, DS-
3, and DS-4 with 0.970, 0.933, and 0.974 respectively. RF
generates the best F-1 score for the DS-2 dataset with a score
of 0.962. The comparison of all six classifiers together, GB
with a score of 0.9555 followed by RF which is slightly less
than it with the score of 0.9547.

Also, GB gives the best accuracy for dataset of DS-1, DS-3,
and DS-4 with the accuracy of 0.967, 0.925, and 0.974 and
RF gives the best accuracy for dataset of DS-2 with 0.967. On
average, both RF and GB give the best accuracy as well for
all datasets.

These results show that we were able to replicate datasets’
owner experiments and get results statistically close to their
study and prove our learning model is working perfectly.

For the rest of the experiments, we selected SVM with a
linear kernel to show how the number of samples can affect
different learning scores and then how we were able to increase
the performance of this learning model with our proposed
approach.



Fig. 3: Marginal Distribution of X (Column sum)

Fig. 4: Marginal Distribution of Y (Row sum)

TABLE III: The F-1 and Accuracy scores for four datasets and all six usec classifiser.

F1 ACC
Cls. DS-1 DS-2 DS-3 DS-4 Avg (F1) DS-1 DS-2 DS-3 DS-4 Avg (ACC)
DT 0.9615 0.9571 0.9027 0.9610 0.9456 0.9585 0.9625 0.8930 0.9610 0.9438
GB 0.9705 0.9446 0.9333 0.9745 0.9557 0.9674 0.9514 0.9256 0.9745 0.9547

KNN 0.9641 0.9336 0.9146 0.9028 0.9288 0.9602 0.9414 0.9048 0.8999 0.9266
RF 0.9668 0.9624 0.9163 0.9731 0.9547 0.9634 0.9670 0.9071 0.9733 0.9527

SVM(L) 0.9530 0.9165 0.9150 0.8502 0.9087 0.9489 0.9274 0.9048 0.8447 0.9065
SVM(G) 0.9470 0.9079 0.9106 0.7110 0.8691 0.9421 0.9201 0.8992 0.6449 0.8516

Max 0.9705 0.9624 0.9333 0.9745 0.9674 0.9670 0.9256 0.9745

C. Performance of the Model Over Number of Training Set

In this experiment, we studied the effects of the learning
model when it was trained with different dataset sizes. For
this purpose, we selected DS-4 as one of the largest phishing
datasets that have been used in this study with 10000 samples.
We reserved 1000 instances with an equal number of phishing
and legitimate samples and then trained the model multiple
times. In each time, we increase the size of the dataset by 500
until we reached 9000 samples. Figure 2 depicts these results.

This graph shows when the size of the training set increases
(from 500 samples to 9500 samples) the precision also in-
creases while recall has over 85% of the learning score in
each case. In our experiment, precision, which is the ability
to label phishing samples correctly, grows gradually when the
training size increases. When the number of training sets is
equal to 500, the precision is less than 0.65, but it increases
to 0.85 when there are 9000 samples in the training set.

The same pattern is seen for the recall, while that trend is
increased with less gradient. This demonstrates that the size
of the training dataset is important to get good precision and
recall.

D. Comparison Between Real and Synthesized Phishing Sam-
ples

We need to demonstrate that the generated synthesized
samples are similar to real phishing ones. This similarity could
be checked at two levels: feature level and instance level. At
the feature level, we need to ensure that the values assigned
to the features in the synthesized samples are similar to real
instances. We have done this through marginal distributions.

To calculate marginals, the transition probabilities were
determined for normalized feature values (described in Subsec-
tion III-B) to maintain the consistency across different ranges
of values in features. The calculated marginal distributions
are shown in Figure 3 and Figure 4 that further ensures the
capability of the data generation technique. We also calculated
the Euclidean distance between the marginal probabilities of
the real and synthesized phishing data. The values are depicted
in Table IV. The Euclidean distances are less than 0.13 across
all the datasets which is very low. The minimum Euclidean
distance of the column sum is 0.027 for the DS-4 dataset
and the row sum is 0.025 for the DS-2 dataset. DS1 has the
least number of features among datasets. We believe that is
why the autoencoder slightly less performs on capturing the
underlying multi-dimensional structure and transforming to the
compressed latent code in DS-1.



(a) DS1 (b) DS2

(c) DS3 (d) DS4

Fig. 5: Ratio of real and synthesized phishing samples in each cluster in four datasets.

TABLE IV: Euclidean distances between real and synthesized
phishing data.

Dataset Euclidean distance
X (Column sum) Y (Row sum)

DS-1 0.085 0.123
DS-2 0.042 0.025
DS-3 0.069 0.048
DS-4 0.027 0.050

After we checked the similarity of synthesized samples and
real phishing samples at the feature level, we need to check the
similarity at the instance level to make sure the final results of
AAE are also similar. For this purpose, we created a clustering
model based on real phishing samples and then tested on
synthesized ones. We calculated what ratio of samples belongs
to each cluster.

We used KNN for clustering real phishing samples and used
elbow method to get the optimum numbers of clusters for each
dataset. The optimum number of clusters for DS-1, DS-3, and
DS-4 is 6 clusters, and DS-2 is 8 clusters. Figure 5 shows the
results of this experiment.

As Figures 5(a), 5(b), 5(c), and 5(d) show, the ratio of
synthesized samples is similar to ratio of real phishing samples
and there is not any significant difference among them. This
proves our adversarial generator can synthesized samples in
the same distribution as the real ones.
Computational Complexity With the recent advancement
of machine learning libraries and the use of the GPUs
have significantly reduced the training time for deep neural
networks. We can train an adversarial autoencoder network
within a few minutes on a machine with a 3.3GHz CPU
and 64GB RAM speed (without GPU support). For better
accuracy, we need a sufficient amount of training data that
is entirely representative of the underlying data distribution.

However, there are situations like phishing websites detection
and behavioral health, social network analysis where sufficient
data collection is problematic due to various restrictions.
Our proposed technique improves the data while producing
a representative and sufficiently large dataset in the particular
data domain.

E. Poisoning Improvements

In this experiment, we analyzed two hypotheses: (i) if the
synthesized samples can bypass the model at a rate more than
real samples and (ii) if adding new synthesized samples into
the training set could immune the learning algorithm against
such adversarial attacks.

Toward this, we first trained models with only the real
samples without knowing any synthesized instances and called
this our Initial Model. We tested this model with two sets
of real and synthesized samples and calculated the detection
ratio for both cases. The real detection ratio shows the model’s
capability to detect phishing samples and could be used as a
ground-truth for comparing. The synthesized detection ratio
demonstrates how many of the synthesized samples were
detected and how many were bypassed.

Figure 6 shows the detection rate in four different testing
sets when an SVM with a linear kernel has been trained.
We compared real samples and synthesized samples for the
first goal, where only real samples were used for training
(Initial model). Results reveal that two models, DS-1 and DS-
4, are vulnerable against adversarial samples. Detection rate
for synthesized samples shows a decrease of 9% and 28% for
DS-1 and DS-4, respectively; A significant decline for these
two models. However, adversarial samples did not affect the
two other models.

As we explained in Section III-B, injecting synthesized sam-
ples may make the learning model resilient against exploratory



Fig. 6: Detection rate of real and synthesized samples with
initial and poisoned model for four datasets.

attacks. To evaluate the second hypothesis, we injected 20%
of synthesized samples into the training set, retrained the
model, and called it poisoned model. We then tested this model
with two types of samples: real and synthesized. The results,
depicted in Figure 6, can be discussed in three folds.

First, injecting synthesized phishing samples into the train-
ing set could make the classifier less vulnerable to such
attacks. For all four datasets, the detection rates for synthesized
samples with the injected model are better than those tested
with the initial model (a model without having any synthesized
samples in the training set.) Albeit this improvement is not
unified for all datasets. For example, in DS-1, the detection rate
for synthesized samples improved by more than 10% (from
85% to 96%) when tested with a poisoned model. In the same
situation for DS-4, a significant improvement of more than
34% has happened.

Another observation is that none of the studied datasets
experienced a decrease in the detection rate for real samples,
but some have seen some improvements. The detection rate for
real samples has been improved by 2, 4, and 5 percentages for
DS-1, DS-3, and DS-4. This proves that injecting adversarial
samples at least does not negatively affect the model’s ability
to detect real samples, but it improves the model in many
cases. While this was not an initial goal for this study, it
slightly improved the total model’s performance.

Finally, in four datasets, detection ratio for synthesized
samples are equal or better than real samples when the
poisoned model was used. This is a luminous result that shows
adversarial attacks against these models have been mitigated,
and poisoned models are less vulnerable to adversarial attacks.

Note that, while DS-4 and DS-2 are the two largest datasets,
but synthesized samples provided better results for DS-3.
It reveals the dataset’s size solely is not a deciding factor
regarding the quality of the dataset and that the data contents
also play a role.

V. CONCLUSION AND FUTURE WORK

Supervised machine learning is a promising approach for
phishing detection. However, sufficient volumes of data re-
garding phishing websites are unavailable and often infeasible

to obtain. Towards this end, we demonstrated how Adversarial
Autoencoders can be used for synthesizing samples that mimic
data of real phishing websites. We compared the similarity
of the features and instances of the generated data to ensure
that the generated data may be realistically generated by the
attacker. We used four publicly available datasets for our
experiments. Our experiments revealed that the learning algo-
rithms work better when they are trained with larger volumes
of data. Injecting synthesized data in the training set improved
the accuracy and recall of the learning algorithms. Moreover,
the learning algorithms that included some synthesized data
also were significantly more robust to exploratory attacks.
Our future work involves the use the AAE for other network
security related applications. We also plan to explore other
data quality issues that will make the learning algorithms more
robust against attacks.

ACKNOWLEDGEMENT

We thank Sid Sutton who helped us with implementation.
This work was supported in part by NSF with award number
CNS 2027750, CNS 1650573, CNS 1822118 and funding from
CableLabs, Furuno Electric Company, SecureNok, AFRL,
American Megatrends, Statnett, Cyber Risk Research, and
NIST. This work was also supported by the U.S. Department
of Justice, Office of Justice Programs/National Institute of
Justice under Award 2017-ZA-CX-0002. Opinions or points
of view expressed in this article are those of the authors and
do not necessarily reflect the official position of policies of
the funding agencies.

REFERENCES

[1] R. Dhamija, J. D. Tygar, and M. Hearst, “Why phishing works,” in
Conference on Human Factors in Computing Systems, 2006.

[2] S. Singh, A. K. Sarje, and M. Misra, “Client-side counter phishing
application using adaptive neuro-fuzzy inference system,” in Interna-
tional Conference on Computational Intelligence and Communication
Networks, 2012.

[3] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson, S. Savage,
G. M. Voelker, and D. Wagner, “Detecting and characterizing lateral
phishing at scale,” in USENIX Security Symposium, 2019.

[4] F. B. of Investigation (FBI), “Business e-mail compromise 12 billion
dollar scam.” https://www.ic3.gov/media/2018/180712.aspx, (accessed
July 2, 2020).

[5] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: a literature
survey,” IEEE Communications Surveys & Tutorials, 2013.

[6] G. Chen and G. Wang, “A supervised learning algorithm for spiking
neurons using spike train kernel based on a unit of pair-spike,” IEEE
Access, 2020.

[7] A. Niakanlahiji, B.-T. Chu, and E. Al-Shaer, “Phishmon: A machine
learning framework for detecting phishing webpages,” in Intelligence
and Security Informatics, 2018.

[8] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning
based phishing detection from urls,” Expert Systems with Applications,
2019.

[9] J. Mao, J. Bian, W. Tian, S. Zhu, T. Wei, A. Li, and Z. Liang, “Phish-
ing page detection via learning classifiers from page layout feature,”
EURASIP Journal on Wireless Communications and Networking, 2019.

[10] A. K. Jain and B. B. Gupta, “Towards detection of phishing websites on
client-side using machine learning based approach,” Telecommunication
Systems, 2018.

[11] J. Kirchner, A. Heberle, and W. Löwe, “Classification vs. regression-
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