
Trust and Verify: A Complexity-Based IoT
Behavioral Enforcement Method. ?

Kyle Haefner1[0000−0001−8884−0159] and Indrakshi Ray1[0000−0002−0714−7676]

Colorado State University, Fort Collins CO 80523, USA

Abstract. In an Internet of Things (IoT) environment, devices may
become compromised by cyber or physical attacks causing security and
privacy breaches. When a device is compromised, its network behav-
ior changes. In an IoT environment where there is insufficient attack
data available and the data is unlabeled, novelty detection algorithms
may be used to detect outliers. A novelty threshold determines whether
the network flow is an outlier. In an IoT environment, we have differ-
ent types of devices, some more complex than others. Simple devices
have more predictable network behavior than complex ones. This work
introduces a novel access control method for IoT devices by tuning nov-
elty detection algorithm hyper-parameters based on a device’s network
complexity. This method relies only on network flow characteristics and
is accomplished in an autonomous fashion requiring no labeled data. By
analyzing connection based parameters and variance of each device’s net-
work traffic, we develop a formalized measurement of complexity for each
device. We show that this complexity measure is positively correlated to
how accurately a device can be modeled by a novelty detection algo-
rithm. We then use this complexity metric to tune the hyper-parameters
of the algorithm specific to each device. We propose an enforcement ar-
chitecture based on Software Defined Networking (SDN) that uses the
complexity of the device to define the precision of the decision boundary
of the novelty algorithm.

Keywords: IoT · Security · Unsupervised Machine Learning · Access
Control.

1 Introduction

The billions of devices that bridge the cyber and physical worlds have already
altered how we interact with our physical surroundings. Smart speakers respond
to spoken requests for information, provide reminders or simply turn on and
off the lights. Embedded cameras can detect who we are and respond to our
gestures to do mundane tasks such as turning up the volume, dim the lights, etc.
For all the convenience and function that these devices, they also bring a long
history of poorly implemented security, unpatched vulnerabilities, and privacy

? This work was supported by NSF under Award Number CNS 1822118, Cyber Risk
Research, NIST, Statnett, AMI, and Cable Television Laboratories.



2 K. Haefner et al.

violations. Poorly implemented security on these devices has lead to distributed
denial of service (DDoS) attacks specifically originating from these devices [8].

Security baselines [4, 5] and strong endpoint security in international stan-
dards [24] are steps in the right direction, but there will always be insecure
devices; either because they were manufactured that way or did not receive soft-
ware patches. This is highlighted in the large corpus of research [1, 25, 25, 23, 27,
26] that documents how and why vulnerable IoT devices are prone to security
attacks. We will never be able to depend on all of our devices being completely
secure, therefore we must instead depend on the network to help us to monitor
and secure the devices for us. To scale to the networks of tomorrow and to be
of practical use to the average consumer, network based IoT security must be
done in a largely autonomous manner.

Unlike networks of the past, made up of a small number of general purpose
machines, Internet of Things (IoT) networks will increasingly be made up of
a large number of specialized devices designed to do a single task. The single
purpose and often constrained nature of these devices makes them harder to
intrinsically secure, but easier to extrinsically analyze. A single temperature
sensor, for example, will not be able to run an anti-malware application, but
does have a simple and predictable network traffic footprint.

This work exploits this single purpose nature and the correspondingly pre-
dictable network behavior of IoT devices to autonomously derive several mea-
sures of complexity based entirely on their network traffic. This allows not only
for the classification and evaluation of IoT devices based on their complexity, but
also enables each IoT device’s historic network behavior to be more accurately
modeled using an anomaly detection algorithm that is tuned to this complexity.

For enforcement we employ a software defined network that can proactively
take several actions on a flow such as counting, logging, rate-limiting, delaying
and blocking. Previous enforcement architectures were built on a binary model
of trust and enforcement, i.e. block or allow traffic for a particular port or for a
particular flow. Instead of binary enforcement; block or allow, our model allows
the enforcement function to dynamically adjust for the complexity of the device
(a direct measure of how well it can be modeled) and the abnormality of the
flow (the measure of its separation from inliers). Highly abnormal flows from
very simple devices can be automatically blocked, while such flows from more
complex devices can be rate-limited or logged. Effectively this places more trust
in devices that can be accurately modeled and less trust in devices that cannot
be accurately modeled. We believe this is a key contribution and we have de-
veloped a ground truth methodology to test our model and a network reference
architecture to enforce it.

This behavior-based flow routing model can be used as the first line of de-
fense; to slow or prevent botnets and DDoS attacks at their source by detecting
anomalous traffic at the granularity of individual flows from specific devices.
Proper implementation would allow the network to selectively isolate and block
malicious flows, leaving devices continuing to perform their primary function.



Trust/Verify: IoT Behavior Enforcement 3

Research Contributions

– We formalize measurements of device complexity and establish a definition
of device behavior based on anomaly/novelty detection formulated from IP
header traffic all using unsupervised techniques that require no labeled data.

– We hypothesize that devices with smaller complexity values will show less
of an aberration in its behavior compared with those of higher complexity
values. Our results justify this. Thus, we tune the outlier threshold for the
anomaly detection algorithms in accordance with device complexity.

– We propose a test architecture that uses the complexity tuned behavior to
autonomously monitor and enforce learned behavior from devices.

This work is organized as follows; in Section 2 we review related research on
how to analyze behavior and secure IoT devices. In Section 3 we describe the
lab setup and the data collected. In Section 4 we develop methods for measuring
complexity and how devices are classified into discrete groups. Section 5 describes
how we develop a method for modeling learned behavior of IoT devices and
describe the enforcement architecture in section 6. In section 7 we describe how
the tuning of the hyper-parameters affects precision, recall and false positives
of the model. Finally in section 8 we summarize the work and propose possible
next steps in this research.

2 Related Work

2.1 Device Identity Detection

Loepz-Martin et al. [10] build a network traffic classifier (NTC) using a recurrent
neural network (RNN) and apply it to labeled IoT traffic. The goal of this is to
identify the types of traffic and services exhibited by an IoT device as a step
toward identifying the device.

Miettinen et al. [13] have developed a method, called IoT Sentinel, that
uses machine learning to designate a device type on the network, referred to by
the authors as a device fingerprint. Using the random forest algorithm and 23
network features they were able to identify device types on the network based on
the device’s traffic. The 23 features are based on layer two, three and four of the
OSI networking stack. Expecting that the body of the packet will be encrypted,
all the features the authors employed are based on unencrypted parts of the
traffic like IP headers information.

Bezawada et al. [2] build on the work done in [13] by using a machine learning
approach to broadly identify the device and place it in a predefined category,
such as a light bulb. According to the authors, even devices from different man-
ufacturers can be placed into general categories such as two separate light bulbs
can be identified and placed into a lighting category.

All supervised solutions of fingerprinting devices suffer from a similar problem
in that they require labeled data for each device. Not only this but a supervised
classifier must be trained on every device, and potentially retrained on devices
after a firmware update.



4 K. Haefner et al.

2.2 IoT Behavior And Autonomous Techniques

The following works use various means of autonomous and unsupervised ma-
chine learning approaches to identifying devices and device behavior. This has
advantages over statically defined access control lists and firewall rules.

IoT-Keeper [7] is an edge based IoT anomaly based access control system
that uses correlation-based feature selection to determine which features do not
contribute to the anomaly detection. AuDI [12] implemented an autonomous
device-type identification that uses the periodicity of device communications
resulting in abstract device categories that could be used to enforce access control
policies. DioT [14] extends the AuDI classification model to create a federated
approach by aggregating device anomaly detection profiles.

Ren et al. use a privacy focused approach to enumerating and analyzing IoT
behavior [19]. Ortiz et al. set up a probabilistic framework to monitor device
behavior using an LSTM (Long Term Short Term Memory) neural network, to
learn from inherent sequencing of TCP flows to automatically learn features from
device traffic with the intent of categorizing devices and distinguishing between
IoT devices and Non-IoT devices [18]. The authors are able to identify previously
known devices after only 18 TCP-flow samples and categorize devices into two
classes IoT and Non-IoT.

2.3 Complexity and Predictability

Formalized measurement of complexity as applied in a computer science con-
text is probably most often associated with the works of Andrey Nikolaevich
Kolmogorov, who defined the complexity of an object as the shortest computer
program to produce the object as an output [9]. This simple notion arises again
in the work of Jorma Rissanen whose work on the minimum description length
principal that establishes that the best model for a set of data is one that leads
to the best compression of the data [21].

In the paper Predictability, Complexity, and Learning authors Bialek et al.
establish a formal result that predictive information provides a general measure
of complexity [3]. In this work we propose that the relationship between pre-
dictive information and complexity is commutative, i.e. not only does predictive
information lead to a measure of complexity, but that complexity provides a
general measure of predictive information.

In machine learning this relationship leads to the logical notion that the
less complex the model the more accurately it can be modeled, or to put this
in the context of IoT, the less complex the device the more accurately we can
define its behavior. Specifically, this work builds an anomaly based behavioral
model, where the device’s complexity directly affects the decision boundary that
differentiates between inliers and outliers.

Our model can be used to determine a representative set of flows, along with
a learned decision boundary, that define the behavior of a device and these flows
can be directly loaded into flow tables of Openflow enabled switches. We believe



Trust/Verify: IoT Behavior Enforcement 5

that this will scale to the broad spectrum of devices and adapt to any new
configurations of devices in the future.

Take, for example, a refrigerator that is also an Android tablet, the method-
ologies previously mentioned in the related works, would struggle to characterize
such a device. Our method does not try to recognize this device as either a re-
frigerator or a tablet, it does not try to guess at the service or characterize the
device’s application layer data. Our model does not rely on learning specific hu-
man interactions with the refrigerator, nor determining if those interactions are
anomalous. Our model only relies on how complex the refrigerator appears on
the network and how much it stays within our learned boundary of behavior.

This work extends the work done in [6] by using a novelty detection algorithm
and formalizing a ground truth testing methodology, to show the efficacy of the
model at recognizing new and anomalous traffic.

3 Data Format and Collection

Data was collected from a real residential network with approximately 25 devices
(Table 1) over the course of 37 days. These devices range from general computing
devices like laptops and smartphones, IoT hubs with several IoT Devices using
Zigbee or Zwave behind them, to single-purpose devices such as light bulbs and
temperature sensors. Data was collected by a central MicroTik router (Figure
1) and sent to nprobe [15] running on a Raspberry Pi. Flows were stored in a
MariaDB relational database. Table 2 shows the features of the data collected.

Table 1. List of Devices

Home Devices

• Amcrest Camera •Plex Server •Raspberry PI 3
•Google Home •Samsung Note 8 •Smart Things Hub
•J. Chromebook (Asus) •Xbox One (2) •Appple Macbook Pro
•Philips Hue Hub •Chromecast •Echo Dot
•Eufy Doorbell •Motorola Android •HP Stream Laptop (2)
•Eufy light bulb •TP Link Switch •Roku Express
•B. Chromebook (HP) •Brother Printer •Roku Stick
•Amazon Alexa 1st gen. •Fire Tablet (3)

Flows were aggregated with a maximum of 30 minutes per flow. Inactive flow
timeout was set to 15 seconds. If the devices have not exchanged traffic in 15
seconds the flow is completed and recorded. For training and test data sets the
data is filtered by an individual IP address. The test environment is configured
such that the devices always receive the same IPv4 address.

Definition 1. Network Flow: A sequence of packets where all the packets in
the flow have the same tuple: source address, destination address, source port,
destination port and protocol.



6 K. Haefner et al.

Table 2. Data Features

Feature Description

IPV4 SRC ADDR IPv4 Source Address
IPV4 DST ADDR IPv4 Destination Address
IN PKTS Incoming flow packets (Device->Destination)
IN BYTES Incoming flow bytes (Device->Remote)
OUT PKTS Outgoing flow packets (Remote->Device)
OUT BYTES Outgoing flow bytes (Remote->Device)
L4 SRC PORT IPv4 Source Port
L4-DST PORT IPv4 Destination Port
PROTOCOL IP Protocol Identifier

Fig. 1. Data Collection Architecture

4 Device Complexity Classification

Device complexity is an aggregate measurement of a device’s IP connections,
dip, and how much its traffic varies over time dv. Devices that are single purpose
should have simple network behavior and general purpose devices will have more
complex network behavior. Figure 2 shows where devices should fall along a
spectrum of simple and complex.

Fig. 2. Spectrum of Network Complexity



Trust/Verify: IoT Behavior Enforcement 7

4.1 Device IP Complexity

This research examines how devices form connections. Simply counting the num-
ber of unique IP addresses that a device connects with fails to take into account
the inherent service-oriented hierarchical structure of the IPv4 address space,
where companies and services are often part of similar subnets. To account for
this we propose a complexity measure based on a simple ratio of IP spread to
IP depth. IP spread is the number of unique source and destination IP addresses
that interact with the device. IP depth is the number of IP addresses that belong
to the same higher level octets.

Definition 2. IP Tree, IP Branch, IP Leaf, IP Spread An IP tree is a
unique first order octet which comprises the root of the tree. An IP Branch is a
second or third order octet that has one or more fourth order octets under it. An
IP leaf is a unique fourth order octet. IP Spread is the sum of total unique IP
addresses that interact with a device.

Device IP Spread (IPSpread)

IPSpread =
∑

IPtrees (1)

Device IP Depth (IPDepth)

IPDepth =

∑
IPleaf∑
IPbranch

(2)

Device IP Complexity (dip)

dip =
IPSpread
IPDepth

(3)

To calculate IP spread and depth we build unordered trees of each IP address
where the first order octet is the root and lower octets are children. Then we
can calculate how many trees, branches and leaf nodes each IoT device contacts.
A large number of IP trees with few branches indicates a large IP spread. A
small number of IP trees that have many branches and leaves indicates a large
IP depth. IP spread/depth is used as one measure of a device’s complexity. The
intuition here is that this complexity measure mirrors how services are organized
based on common IP subnets. As devices form connections out to the Internet
their complexity goes up. As the number of connections that have common
first, second and third octets increases this has a corresponding reduction in the
complexity measurement of the device. Devices belonging to a single ecosystem
such as Google Home have a small number of broad trees (low IP Spread and high
IP Depth) as they connect to mostly Google’s networks dedicated to these types
of devices. Other devices such as laptops and smart phones make connections
to many unique destinations thus leading to a large number of thin trees each
having fewer branches and leaves. Figure 3 shows the total IP complexity of
each device. Devices that are more general purpose have higher complexity and
are are grouped together on the right of the figure. Single purpose and lower
complexity devices are grouped on the left of the figure.



8 K. Haefner et al.

Fig. 3. IP Device Complexity

4.2 Device Variance

The variance metric comes from the simple notion that devices on a network
present different variances based on what they do on the network. Device vari-
ance is calculated by taking the sum of the standard deviation of n device features
df in the training set as shown in Equation 4. Each device’s variance is graphed
in Figure 4. Here again, devices that tend to be more general purpose have higher
complexity and are grouped on the right of the figure. Single purpose and lower
complexity devices are grouped on the left of the figure.

Device Variance (dv)

dv =

n∑
f=1

σdf (4)

4.3 Aggregate Complexity

Overall device complexity is the sum of the average device variance and the
average device IP complexity as calculated in Equation 5 and shown in Figure
5. Devices in the figure again show that general purpose and higher complexity
devices tend toward the right side of the graph and more single purpose lower
complex devices tend to be grouped on the left side of the graph.



Trust/Verify: IoT Behavior Enforcement 9

Fig. 4. Average Device Network Variance

Aggregate Device Complexity (ADC)

ADC = dip + dv (5)

Discrete Complexity Organizing the devices based on logarithmic magnitudes
of complexity allows us to easily examine device characteristics within discrete
groups as shown in in Figure 6.

Discrete Device Complexity (DDC)

DDC = dlog10ADCe (6)

5 Behavior

Given the complex interactions that IoT devices have with the physical world,
behavior represents the dynamic and changing network footprint exhibited by
these devices. The sensing and actuating response of IoT devices that bridges the
cyber and physical world requires new methods of defining what is normal and
what is abnormal. IoT devices, even the same make and model from the same
manufacturer will exhibit slightly different behavior based on how they interact



10 K. Haefner et al.

Fig. 5. Aggregate Complexity

Fig. 6. Discrete Complexity



Trust/Verify: IoT Behavior Enforcement 11

with the human inhabitants, each other and the environment. Two very similar
devices, that have different apps installed may act very differently. This variance
in behavior requires that the model is tailored to these specific and individual
devices.

We begin by defining IoT device behavior based on the past history of net-
work interactions of the device, bounded by the most extreme of these inter-
actions in the training set. To model the degree of normality and extremity of
behavior we turn to classic outlier detection algorithms, adding what we be-
lieve to be a key contribution of this research, we tune the hyper-parameter of
the outlier detection algorithm to the specific device based on the measure of
complexity as defined in the previous section.

This method has the direct affect of making the decision boundary of the
trained model a more precise fit for simple devices and more generalized for
complex devices. This allows the detection algorithm to be more strict in identi-
fying outliers for simple devices and more lax for complex devices. This enhances
the model, enabling it to adaptively prioritize new extreme behavior and reduce
false positives for simple devices.

5.1 Novelty Detection

Novelty detection is a form of outlier detection where the training set is con-
sidered untainted by outliers i.e. only positive samples. New observations are
classified and determined to fall within the decision boundary are inliers and
observations outside the decision boundary are outliers. To derive a behavior for
a device we employ the One Class Support Vector Machine (OCSVM) algorithm
using the Radial Basis Function (RBF) kernel [11]. Outlier flows detected dur-
ing the training phase are recorded, and form the set of flows we call significant
flows.

Definition 3. Significant Flow: A significant flow is one that is marked as
an outlier by the OCSVM during training. This set of flows plus the decision
boundary forms the behavior boundary of the device.

Definition 4. Device Behavioral Boundary: Device behavioral boundary
is the set of all unique significant flows and the decision boundary found during
training.

To establish that the complexity measurement is a statistically relevant one
we take the linear regression of the number of outliers found by the OCSVM
using the default values of ν = 0.5 and gamma as calculated in equation 7. The
correlation of outliers to anomalies can be seen in Figure 7.

γ =
1

nfeatures ∗ x .var()
(7)



12 K. Haefner et al.

Fig. 7. Complexity Vs Anomalies

5.2 Novelty Detection Tuning Using Device Complexity

To the best of our knowledge, labeled anomaly data for each of the devices
in Table 1 does not exist. To test the efficacy of our model we developed the
following testing ground-truth methodology:

Training and Testing Set: We took up to 1000 historical flows from each
device, used 80% for training and 20% for testing. We assume that all of the
testing set consists of inliers (i.e. no a priori outliers). We then developed a set
of outliers by randomly generating each IPv4 destination octet such that each IP
address generated conforms to a non-reserved IP address [20]. Destination ports
were randomly generated in the range 1-65535 and protocols were randomly
picked from the set (1,6,17) which were the protocols found in the training data.

The OCSVM using the RBF kernel is governed by the two hyper-parameters,
ν (nu) and γ (gamma). Gamma sets the radius of the RBF kernel by determining
the influence of each example of the decision boundary and ν sets the upper
bound on fraction of errors during training and the lower bound on the fraction
of support vectors used. For the purposes of this work we set this using the ‘scale’
option of Sci-kit learn which uses the following equation to determine gamma.

This research examines three methods to establish ν for devices; static ν set
uniformly across all devices; a dynamic ν set per device, and a ν tuned to the
complexity of the device.



Trust/Verify: IoT Behavior Enforcement 13

5.3 Static Hyper-Parameter ν

For the static method an average ν is found and applied uniformly across all the
device models. To find the average ν, each device was modeled using OCSVM
with ν varied over the range of 0.00001 to 0.5. The ν for each device that had
the best F1 score was saved and the mean ν value was calculated across all the
devices. This average ν was then used to train the model for each device and
test for anomalies. This gives a baseline model where there is a balance between
precision and recall and where the hyper-parameter ν is set to the same value
for each device.

5.4 Dynamic Hyper-Parameter ν

The dynamic method finds the best ν for each device and that ν is applied
individually to each model. To find the ν value for individual devices, each
device was modeled using OCSVM with ν varied over the range of 0.00001 to
0.5. The ν for each device that had the highest F1 score was then used to train
the model for that device and test for anomalies. This gives results that balance
precision and recall and a model that is tuned per device.

5.5 Complexity-Tuned Dynamic ν

To tune the model based on complexity a value for ν is found that minimizes
false positives for low complex devices. To find a ν value that is tuned to the
complexity of the device, each device was modeled using OCSVM with ν varied
over the range of 0.00001 to 0.5. The ν for each device that had the highest Fβ
scores where β = ÂDC , where ÂDC is the normalized value (between 0 and 1) of
the aggregate device complexity as defined in section 4. This search prioritizes
minimizing false negatives on low complexity devices as seen in equation 8.

Fβ = (1 + β2 )
precision ∗ recall

(β2 ∗ precision) + recall
(8)

6 Enforcement Architecture

The enforcement architecture shown in Figure 8 is based on a centralized model
where there is a single device that acts as a router, gateway and access point. To
implement the enforcement architecture we use a Raspberry Pi 4. The Raspberry
Pi 4 is a single-board computer based on an ARM architecture. We chose this as it
is a reasonable representation of the embedded architectures used in today’s more
powerful home routers, and analyze if it is capable of handling both training the
novelty detection model and switching and routing done by the SDN controller
and SDN switch.

SDN architectures decouple the control and the data plane in routers and
switches. This opens the network to new services, features, and a level of dy-
namism that was previously not possible. This work leverages the programma-
bility of the network to dynamically allow, block, rate-limit, log and route traffic



14 K. Haefner et al.

based on if the flow is novel, the degree of novelty, and the complexity of the
device.

The reference enforcement architecture developed for this work uses the
OpenFlow [16] reference soft switch called OpenVSwitch[17]. OpenVSwitch sup-
ports OpenFlow versions 1.0-1.5.

RYU is a software defined network controller that implements OpenFlow. In
this prototype we use RYU to setup and control OpenVswitch[22]

The flow collector consists of a Raspberry Pi running a netflow collection
software called nprobe. Nprobe stores the flows into a MariaDB database.

6.1 Enforcement

Enforcement of the currently proposed test environment examines only values
known at connection time. Aggregate flow metrics will be examined in a future
work. The connection enforcement stage is only run once at flow connection
setup. The connection features include IP header attributes such as IP source,
IP destination, port, and protocol. If the model detects an outlier based on the
connection features it will use the current device confidence scores and the outlier
degree to the flow to calculate the flow trust score.

Fig. 8. Enforcement Architecture

In Figure 8 the anomaly detection engine loads previously trained device
models stored as serialized python objects and calculates device complexity,
behavioral boundary, and flow scores. For flows that do not exist in the current
flow rules table of OpenVSwitch, RYU queries the anomaly engine to determine
if the flow is an outlier, inlier or significant flow (a flow that was an outlier during
the training stage). If a flow is determined to be an outlier and the policy for
that device is to drop outliers then the flow is simply not added to the flow table
matched rules and is dropped.



Trust/Verify: IoT Behavior Enforcement 15

The architecture in Figure 8 allows the network to make extremely granular
flow decisions on every flow in the network, including inbound/outbound traffic
to the Internet and intra-network device traffic. Based on the behavioral bound-
ary there is no need to isolate an entire device, just the flows that are found to
be abnormal.

7 Results

7.1 Static Hyper-Parameter ν

Figure 9 shows the OCSVM classifier trained on each device with a static ν and
applied uniformly to all devices based on the search that optimizes the F1 score
as defined in 5.2. This model has an average false positive rate (FPR) of 0.082
averaged across all devices.

Fig. 9. Un-Tuned Model

Figure 10 shows the OCSVM where each device model is tuned with the ν
that optimizes the F1 score. This model has a average false positive rate (FPR)
of 0.062.

Figure 11 shows the OCSVM where each device is tuned to the ν that uses
the complexity of the device to influence the precision of the Fβ score. There is
a noticeable drop in the number of false positives overall, however more impor-
tantly there is a greater drop in the false positive rate for the lower complexity



16 K. Haefner et al.

Fig. 10. Search Model

devices. This can be seen in the fact that more of the devices on the left (the
low complexity devices) have markedly smaller false positive rates. This is the
expected result as we are tuning the Fβ score weighted toward precision on these
devices.

Table 3. Low Complexity Model Characteristics

Model Type DDC <5 DDC <4 ADC <Mean ADC <1 Std Dev

Static
P=0.984
R=0.549
FPR=0.107

P=0.98
R=0.582
FPR=0.114

P=0.911
R=0.893
FPR=0.061

P=0.914
R=0.911
FPR=0.06

Dynamic
P=0.927
R=0.893
FPR=0.072

P=0.916
R=0.581
FPR=0.113

P=0.946
R=0.936
FPR=0.053

P=0.959
R=0.946
FPR=0.044

Tuned
P=0.951
R=0.915
FPR=0.048

P=0.96
R=0.955
FPR=0.033

P=0.975
R=0.878
FPR=0.029

P=0.976
R=0.887
FPR=0.026

Table 3 shows how the three models perform on several subsets of the device
space where devices have low complexity measures. The first column shows the
model on devices that have a discrete device complexity DDC of less than 5
(as calculated in section 4.3. The second column shows devices with a DDC of



Trust/Verify: IoT Behavior Enforcement 17

Fig. 11. Tuned Search Model

less than 4. The third column shows devices that have an aggregate complexity
ADC less than mean complexity of the set of all devices. Finally, the last column
shows the devices that have ADC of less then one standard deviation.

The tuned model outperforms both the dynamic and the static models in
terms of precision and false positive rate. This is expected as the tuned model
has a higher weight for minimizing false positives than the other two with a
small trade-off of lower recall. It is also notable, that the tuned model performs
better on the higher complex devices as shown in column 1,2 with the tuned
model having better precision and recall than the static and dynamic models.

8 Conclusions and Future Work

In this work we established an autonomous and unsupervised method to for-
mally measure the complexity of a network device based solely on the network
flows from that device. We show that this complexity measure has a positive
correlation to the number of outliers found in an un-tuned anomaly detection
engine. We then used this measure of device complexity to develop a behavioral
model for each device based on a tuned novelty detection engine. We show that
this behavioral model has a lower FPR for all devices and performs better than
both the static and dynamic modeling methods. Finally, we propose a network
architecture based on SDN to dynamically enforce our model.



18 K. Haefner et al.

In future work, we will look at additional methods of establishing network
complexity such as incorporating a second enforcement stage based on aggregate
flow features such as bytes per second and packets per second. This will allow the
model to account for connections that are normal in the connection attributes,
but may be anomalous based on bandwidth. We also apply our complexity model
to other domains, such as industrial IoT networks and SCADA based networks.
Finally we will look at how we can use a supervised learning approach to finger
print devices and use this to bootstrap a behavior model across know common
devices and device ecosystems.

References

1. Apthorpe, N., Reisman, D., Feamster, N.: A smart home is no castle: Privacy
vulnerabilities of encrypted iot traffic. arXiv preprint arXiv:1705.06805 (2017)

2. Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I., Ray, I.: Behavioral
fingerprinting of iot devices. In: Proceedings of the 2018 Workshop on Attacks and
Solutions in Hardware Security. pp. 41–50. ACM (2018)

3. Bialek, W., Nemenman, I., Tishby, N.: Predictability, complexity, and learning.
Neural computation 13(11), 2409–2463 (2001)

4. Fagan, M., Megas, K., Scarfone, K., M, S.: Core cybersecurity feature baseline for
securable iot devices. Tech. rep., National Institute of Standards and Technology
(2019)

5. Group, C.C.W.: The c2 consensus on iot device security baseline capabilities. Tech.
rep., Consumer Technology Association (2019)

6. Haefner, K., Ray, I.: Complexiot: Behavior-based trust for iot networks. In: 2019
First IEEE International Conference on Trust, Privacy and Security in Intelligent
Systems and Applications (TPS-ISA). pp. 56–65. IEEE (2019)

7. Hafeez, I., Antikainen, M., Ding, A.Y., Tarkoma, S.: Iot-keeper: Securing iot com-
munications in edge networks. arXiv preprint arXiv:1810.08415 (2018)

8. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: Ddos in the iot Mirai and
other botnets. Computer 50(7), 80–84 (2017)

9. Kolmogorov, A.N.: On tables of random numbers. Sankhyā: The Indian Journal of
Statistics, Series A pp. 369–376 (1963)

10. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network traffic
classifier with convolutional and recurrent neural networks for internet of things.
IEEE Access 5, 18042–18050 (2017)

11. Manevitz, L.M., Yousef, M.: One-class svms for document classification. Journal
of machine Learning research 2(Dec), 139–154 (2001)

12. Marchal, S., Miettinen, M., Nguyen, T.D., Sadeghi, A.R., Asokan, N.: Audi: Toward
autonomous iot device-type identification using periodic communication. IEEE
Journal on Selected Areas in Communications 37(6), 1402–1412 (2019)

13. Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.R., Tarkoma, S.:
Iot sentinel: Automated device-type identification for security enforcement in iot.
In: 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). pp. 2177–2184. IEEE (2017)

14. Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi,
A.R.: Dı̈ot: A federated self-learning anomaly detection system for iot. In: 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS).
pp. 756–767. IEEE (2019)



Trust/Verify: IoT Behavior Enforcement 19

15. An extensible netflow v5/v9/ipfix probe for ipv4/v6 (2020),
https://www.ntop.org/products/netflow/nprobe/

16. Openflow switch erata, open networking foundation, onf ts-001 (2012),
https://www.opennetworking.org/wp-content/uploads/2013/07/openflow-spec-
v1.0.1.pdf

17. Production quality, multilayer open virtual switch (2019),
https://www.openvswitch.org

18. Ortiz, J., Crawford, C., Le, F.: Devicemien: network device behavior modeling for
identifying unknown iot devices. In: Proceedings of the International Conference
on Internet of Things Design and Implementation. pp. 106–117. ACM (2019)

19. Ren, J., Dubois, D.J., Choffnes, D., Mandalari, A.M., Kolcun, R., Haddadi, H.:
Information exposure from consumer iot devices: A multidimensional, network-
informed measurement approach. In: Proceedings of the Internet Measurement
Conference. pp. 267–279. ACM (2019)

20. Requirements for internet hosts – communication layers (1989),
https://tools.ietf.org/html/rfc1122

21. Rissanen, J.: Stochastic complexity in statistical inquiry. World Scientific (1989)
22. Ryu sdn framework (2019), https://osrg.github.io/ryu/
23. Sachidananda, V., Siboni, S., Shabtai, A., Toh, J., Bhairav, S., Elovici, Y.: Let the

cat out of the bag: A holistic approach towards security analysis of the internet of
things. In: Proceedings of the 3rd ACM International Workshop on IoT Privacy,
Trust, and Security. pp. 3–10. ACM (2017)

24. Various: Open connectivity foundation (ocf) specification — part 2: Security spec-
ification. Standard, Open Connectivity Foundation (2019)

25. Wilson, C., Hargreaves, T., Hauxwell-Baldwin, R.: Benefits and risks of smart
home technologies. Energy Policy 103, 72–83 (2017)

26. Yang, Y., Wu, L., Yin, G., Li, L., Zhao, H.: A survey on security and privacy issues
in internet-of-things. IEEE Internet of Things Journal 4(5), 1250–1258 (2017)

27. Zhao, K., Ge, L.: A survey on the internet of things security. In: 2013 Ninth inter-
national conference on computational intelligence and security. pp. 663–667. IEEE
(2013)


