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Abstract—Identification and tracking of individuals or groups
perpetrating latent or emergent behaviors are significant in home-
land security, cyber security, behavioral health, and consumer
analytics. Graphs provide an effective formal mechanism to
capture the relationships among individuals of interest as well
as their behavior patterns. Graph databases, developed recently,
serve as convenient data stores for such complex graphs and
allow efficient retrievals via high-level libraries and the ability
to implement custom queries. We introduce PINGS (Procedures
for Investigative Graph Search) a graph database library of
procedures for investigative search. We develop an inexact graph
pattern matching technique and scoring mechanism within the
database as custom procedures to identify latent behavioral
patterns of individuals. It addresses, among other things, sub-
graph isomorphism, an NP-hard problem, via an investigative
search in graph databases. We demonstrate the capability of
detecting such individuals and groups meeting query criteria
using two data sets, a synthetically generated radicalization
dataset and a publicly available crime dataset.

Index Terms—sub-graph isomorphism, graph pattern match-
ing, similarity measure, graph databases

I. INTRODUCTION

Exploration of social networking and behavioral data with

the goal of identifying certain latent and emergent behaviors

of individuals and groups is necessary in domains such as

homeland security, cybersecurity, consumer analytics, and

behavioral health. Such behavior patterns in many cases are

naturally expressed in the form of graphs [1], and often observ-

able in interactions via social networks [2]. In cybersecurity,

organizations continually seek to prevent threats by detecting

risk potential using performance-related and technical indi-

cators recorded over time [3]. Businesses are interested in

an individual’s online activities and purchases over time to

track on the customer and determine the potential for future

purchases via consumer analytics [4] [5]. In behavioral health,

identification of precursors to suicide over time is of vital

interest [6] [7]. Graph-based models, mining, and tracking

algorithms provide a powerful approach for these problem

domains.

Of specific interest to our work is homegrown violent

extremism, a major threat spreading to many parts of the
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world [8]. An individual’s transformation towards violent

radicalization typically involves a sequence of steps; examples

of such steps include the consumption of extremist ideas and

propaganda through internet sources and the immersion with

other radicalized peer groups [1] [8] [9]. It is a daunting chal-

lenge to detect the emergence of indicators among individuals

in a large population. In many cases preparatory tasks, or

even attacks, have been carried out as groups. Detection of

such cases is extremely challenging as individual behaviors

may not follow all the profile components or steps, while the

group as a whole does. Thus, efficient mechanisms are also

necessary to track the partial matching profiles of individuals

which taken together satisfies more complete version of the

profile of interest.

The focus on this study is inexact pattern matching tech-

niques to identify the behavior of suspicious persons and

groups. As the examples above indicate, the techniques are

applicable to many other domains. The behavior of extremists

and criminals can be descriptively studied through their past

records and activities. Radicalization trajectories of home-

grown jihadists based on 335 known American jihadists are

characterized in [8] in the form of 135 detailed forensic

biographies that detail their pathways. Probabilistic models of

radicalized pathways are presented in [1].

Analysis of crime data for prediction and prevention often

also involves similar mining and analysis. Radicalization as

well as criminal data are highly connected and can contain

knowledge of the interpersonal and/or social media connec-

tions among individuals as well as association with suspi-

cious activities, events, and locations. Such data representation

implicitly forms a complex multi-dimensional network, and

requires complex graph search and pattern matching operations

to facilitate deeper analysis. Some online social network

platforms also offer graph search on their networks [10] [11];

but they allow limited amount of data due to confidentiality or

legal constraints. Data integrity is a concern in online social

networks due to fake accounts created to purposely mislead.

Data integrity is one of the key dependencies of investigative

search; the biographical data used in this study was manually

collected from court documents and other public sources on

American homegrown Salafi-jihadist terrorism offenders [8]

[1].

Graph databases are indispensable for pattern-based query-

ing over large volumes of data that are characteristic of our
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problem domain. Unlike SQL or NoSQL databases, they are

designed to treat the relationships between data as equally

important as the data itself [12]. The nodes and edges are

considered as separate data structures in the database. Graph

databases reshape graph problems and address them through

novel approaches. Neo4j [13], a prominent graph database

available in the market, also includes basic graph traversal

algorithms and the capability for users to implement custom

procedures and extensions to meet unique requirements. The

developer libraries simplify the access of graph data structures

and the implementation of custom query procedures. Although

the focus of this work is graph analytics for querying, the

instantiation of data in the Neo4j graph database also en-

ables further graph theoretical analysis using a rich, built-in

library of parallel versions of graph algorithms optimized for

the database [14] [15]. Algorithms for centrality, community

detection, and path finding are all readily available for employ-

ment on the data that will further deepen the analytic insights

for investigators.

In this study, we use a Neo4j graph database as the data

storage and implement an algorithm to fetch profiles of interest

from the graph database. The algorithm is based on sub-graph

pattern matching using a scoring mechanism. It is developed

as a set of Neo4j procedures called PINGS (Procedures for

Investigative Graph Search) where it works as custom query

into the database. In graph theory, this problem is named

as the sub-graph isomorphism, which is known to be an

NP-hard problem [16]. Two data sets are used to validate

and evaluate the proposed algorithm. One is a synthetically

generated radicalization dataset (RD) [17], mimicking the

behavioral models of homegrown radicalized extremists [1]

[8], that is used to evaluate the scalability of the method.

A query graph is defined to represent the generic behavior

of an extremist, criminal or their group. So, the query graph

represents a superset of potential behaviors of suspects, and

the score mechanism calculates the similarity between each

individual or group and the query graph. The similarity score

is a measurement of the similarity between an individual

behavior profile and the set of behaviors exhibited by an

extremist. Second data set is a crime dataset (CD) accessible

via the Neo4j sandbox [18]. It contains the street crime data

in Greater Manchester, UK. The dataset was largely extracted

from public sources about the prevalence, location, and type

of crime [19], but does not include any real information

about persons related to the crimes. The dataset was enriched

to include fake criminals, investigators, and timestamps for

demonstration purposes. The proposed algorithm was applied

to this crime dataset to search for similar crime patterns

with respect to a criminal or a specific location. The study

shows the accuracy of the results on several investigative

domains; radicalization and crime pattern detection. Moreover,

the proposed approach is sufficiently scalable to manipulate

hundred thousands of individuals and the query performance

depicts that it is capable of retrieving individuals or groups

within a reasonable time frame.

The contribution of this paper is as follows: a) We propose

an investigative graph search technique using graph databases.

The proposed algorithm is capable of retrieving individuals

and groups for further investigation based upon their similarity

to a query graph. This is a reliable and scalable investigative

graph search approach compared to the Investigative Simula-
tion [20]. A library of routines useful for investigative graph

search using Neo4j database is presented. b) We propose a

novel mechanism to detect groups of individuals that col-

lectively satisfy the query graph. The motivation for such

an algorithm is the observation that groups of people in a

conspiracy have been known to cumulatively perform the set

of suspicious activities in the behavioral model (query graph).

Section II reviews some related work. Section III presents

the preliminaries and notations, data schema, node categoriza-

tion on graph databases, and proposed algorithm. Section IV

depicts the experiments and results. Section V concludes the

paper and enumerates future research directions.

II. RELATED WORK

Our study builds on the inexact sub graph isomorphism

problem. Inexact matching involves finding subgraphs that

closely match a query graph. Exact match solutions do not

exist for many problems involving social networking data, e.g.,

during radicalization process or when data is incomplete. Exact

subgraph match is relatively less complex as it looks only for

exact matches. Ullmann’s Algorithm [21] is the first method

to find isomorphic patterns of query graphs in large graphs

[16]. Tree search based algorithms are relatively efficient for

exact matching related to big-data problems [22] [23] while

optimizing the memory consumption.

BB-Graph [16] is a branch-and-bound technique for exact

subgraph isomorphism for querying in graph databases. They

also use the Neo4j graph database. A top-k pattern matching

technique is proposed in [24] based on two criteria for ranking

the matches, relevance and distance functions. Then the gener-

alized top-k matching function is introduced as a combination

of both generalized relevance and distance functions. Dual
simulation is an enhancement of Ullmann’s algorithm which

searches for binary match relations between query and data

graphs. It preserves not only parent-child relationships, but

also child-parent relationships in the match and thus produces

more sensible matches [25].

Investigative Simulation [20] is an extension of dual sim-

ulation to achieve inexact matching in isomorphic patterns

to produce more sensible matches of potential subjects for

further investigation. They also propose a roadmap of further

advancements necessary for investigative search, particularly

for detecting the radicalization of homegrown violent extrem-

ists based upon online and offline behavior. They introduce

a categorical node labeling mechanism for investigations by

giving weight to each node based on the activity repre-

sented by the node. An investigative framework for detecting

radicalization trajectories in large heterogeneous graphs [26]

demonstrates the scalability of the approach through a large

dataset. Investigative search is applicable in other domains like

consumer analytics, behavioral health, and cyber security [27].
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Our work builds on [20] [26] [27] and provides a more scalable

investigative graph search via graph databases. In [20] [26]

[27] the data is stored in files and evaluations are done as

post processing steps after the data are fed into the program.

However, this is extremely inefficient as data is dynamically

updated, and it is necessary to take into account impact of data

storage for investigative graph search. In our study, we focus

not only on maintaining a graph data store but also leveraging

the features of the graph database to fetch investigative results

as a custom query in real time.

III. INVESTIGATIVE SEARCH OF GRAPH DATABASES

Terminology and notation is presented here before

discussing the proposed algorithm and the exertion of some

features of graph databases. Mostly, investigative graphs

follow the same graph structure; persons bind with set of

indicators/activities.

Definition 1. Investigative graph
An investigative graph is defined as a heterogeneous di-

rected graph G = (V,E, L,R), where

• V is a finite set of nodes, n denotes the cardinality of V ,

that is, n = |V |
• E ⊆ V × V , where (v, v′) is an edge from v to v′

• L denotes the label set of nodes in the graph, for example,

L = {Person, Indicator, Social media acc, Post, ...}
• R is the set of edge types, for example, R =
{exhibits, knows, posts, ...}

The Data graph is given by G = (VG, EG, LG, RG), and the

query graphs by Q = (VQ, EQ, LQ, RQ)

Definition 2. Match node
There are 2 ways to match a node based on the requirement

stated in Q. Some nodes only need to be matched with

the label and some nodes require to be matched with node

properties.

• Label match
if u ∈ VQ , v ∈ VG and l′(u) = l(v) where l′ ∈ LQ and

l ∈ LG, then labels of u & v nodes are matched
• Properties match

If PV denotes the properties set in node v and PU denotes

the properties set in node u
For given p ∈ PV , p′ ∈ PU and p′(u) = p(v), then

properties of u & v nodes are matched

Definition 3. Match edge
The direction and the relationship type should be matched to

consider the edge similarity.

For an edge eu = (u, u′) ∈ Q and there exists ev = (v, v′) ∈
G and r′(eu) = r(ev) where r′ ∈ RQ, r ∈ RG, then eu & ev
edges are matched

We implement similarity measures as Neo4j procedures to

detect suspicious individuals (similarityMeasure) and groups

(neighborhoodMeasure). These procedures generate complex

custom queries to the graph database. Procedures are changed

for crime dataset (crimeAnalysis) to gain the compatibility and

Figure 1. The data schema of radicalization data

Table I
NODE TYPES IN RADICALIZATION DATASET (RD)

Node
type

Node name Description

QF
(Query
Focus)

• Person The initial node represents the
subject where the search starts

IIRA (In-
dividually
innocu-
ous)

• Purchase Weapons Behavior that is not harmful
individually but if IND or RF
indicators are present, then IIRA
activity could be a potential threat

IND (In-
dicator)

• Received Training
• Referred Radicalized

Materials • Suspicious
Travel

A behavior that should be traced
further

RF (Red
Flag)

• Carried an attack
• Detonated a bomb

A high risk behavior that should
be further investigated
immediately

SM • Social Media Account Represents a social media account
of a Person

EP • Extremist Post Represents a post which contains
radicalization related content.

the dynamicity for crime pattern detection without changing

the core algorithm.

A. Radicalization data schema

The data schema (Fig. 1) represents the preliminary be-

havior of a radicalized individual. Person denotes the subject

of the network and connects with other persons via KNOWS
relationship. Indicator depicts a suspicious activity and links

with EXHIBITS relationship. A radicalized person can have

multiple Social Media Accounts (SM Acc) to disseminate his

interests and radicalized ideologies. Those accounts link with

HAS relationship and such posts bind with POSTS relationship.

B. Node categorization for indicators

The node categorization is performed w.r.t. the data schema

and the characterization given in [20]. Radicalized activities

(Indicators) are classified into 3 classes based on the severity.

Table I shows the node types including the indicator classifi-

cation. Crime dataset contains various crime types which we

categorize into two classes as indicated in Table II.

Figure 2 shows an example of a query graph for radicaliza-

tion dataset. A complete match with the query graph, in our

case, is a behavioral indicator that identifies the radicalization.

In effect, the query details all the indicators one could expect

from a violent extremist. By querying the database for this

pattern, we are searching for individuals who have exhibited

all or some of these indicators as means to identify and

prioritize high-risk individuals. We calculate similarity score

for different subgraphs in the database with respect to the
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Table II
NODE TYPES IN CRIME DATASET (CD)

Node
type

Crime Type Description

RF
(Red
flag)

• Possession of weapons
• Criminal damage and

arson • Violence and
sexual offences • Drugs
• Burglary

High risk crimes that law
enforcement need to prioritize for
taking actions straight away

IND
Indi-
cator

• Public order • Theft
from the person • Other
theft • Vehicle crime
• Robbery • Other crime
• Shoplifting • Bicycle

theft

Comparatively less severe crimes
than RF, but still need further
investigating to locate criminals.

Figure 2. A query graph for radicalization dataset (RD)

query graph and fetch matching sub graphs with similarity

scores above a threshold value.

C. Similarity measure for radicalization detection

The Neo4j procedure consists 4 input parameters as follows.

similarityMeasure(similarityThreshold,
redF lagMultiple, queryLabel, queryFocusLabel)

(1)

• similarityThreshold – A similarity score is calculated for

each user based on his activities. It is normalized to range

(0,1). The query graph score similarityThreshold is used

to identify matching subgraphs.

• redFlagMultiple – This attribute is used to highlight the

highest risk radicalized activities [20]. The redFlagMulti-
ple (≥ 1) is used to multiply (weight) high risk activities

as a weighted (multiplicative) value. The end result is a

prioritization of sub graphs by similarity score due to the

presence of high risk activities.

• queryLabel – A node in a Neo4j graph database can

have multiple labels. This allows us to identify a query

graph within the database by appending another label

(eg: ‘Query’). Therefore, the query graphs can be easily

updated for different experiments which the algorithm

picks up within the database itself.

• queryFocusLabel – The node label indicates the starting

point of the algorithm. In our context, we have to provide

the label of the person-‘User’. Then the algorithm scans

all the persons and evaluates the similarity measure for

each person.

e.g., similarityMeasure(0.7, 2, ‘Query’, ‘User’)

Algorithm 1: similarityMeasure
inputs : Q : Query graph with n vertices

S : Similarity threshold

W : Red-flag multiple

output: M : Set of matched graphs

1 M ← ∅
2 C ← getConfigurationList
3 Get the QF node (Qqf ) from Q

4 Sqf ← {s′ | s′ ∈ VG &matchNode(Qqf , s
′)}

5 foreach s′ ∈ Sqf do
6 MG ← searchSimilarGraphs(s′, Q,W,C)
7 SM ← getMatchedScore(MG)
8 if SM � S then
9 Add MG to M

10 return M ;

Algorithm 2: searchSimilarGraphs
inputs : s′ : QF node in VG

Q : Query graph

W : Red-flag multiple

C : Configuration list

output: N : All matched nodes

A : Matched activity nodes

S : Matched similarity score

1 DM ← s′

2 foreach q′ ∈ Q do
3 MN ← ∅
4 foreach s′ ∈ DM do
5 if matchNode(s′, q′,W,C) then
6 Remove s′ from DM

7 RQ = {rq | rq ∈ QE & outgoingEdges(q′)}
8 foreach rq ∈ RQ do
9 RG =

{rg | rg ∈ GE & outgoingEdges(s′)}
10 foreach rg ∈ RG do
11 mn = matchEdge(rq, rg)
12 if mn != null then
13 MN ← mn

14 DM ←MN

15 return N,A, S;

D. Neighborhood measure for radicalization detection

neighborhoodMeasure(similarityThreshold,
redF lagMultiple, queryLabel, queryFocusLabel)

(2)

In some cases, radicalized individuals are known to work in

a conspiracy with individuals or groups with similar interests

for specific tasks. Therefore, finding single-person subgraphs

by calculating the individual similarity scores is not sufficient

to detect such collectively suspicious behavior where the indi-

cators are effectively dispersed among a group of individuals
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[26] [27]. We propose a neighborhood measure to detect such

group activity. The procedure has same input parameters as the

similarityMeasure but it internally calls algorithm 3 to detect

suspicious groups.

E. Similarity measure for crime pattern detection

The nature and structure of crime data is different from that

of radicalization dataset. We look for different crime patterns

based upon a criminal or a location. The procedure parameters

are altered to address our requirement while deploying the

same algorithm. The definition of the modified procedure is

as follows.

crimeAnalysis(entity, identifier,
identifierV alue, relationshipToCrime,

redF lagMultiple, similarityThreshold)

(3)

When compared to radicalization detection that utilized a

canonical violent extremist pattern, we enable much more

flexibility in the crime pattern analysis by enabling analysts

to select a particular crime pattern within the data as a query

graph. The procedure then searches for the existence of similar

patterns (by criminal or location) throughout the database to

aid in the identification of others perpetrating a similar set of

crimes or locations that are subjected to the same types of

crimes. The first 3 inputs define the root node for analysis.

Entity represents the node label (in this dataset the Location
or the Person). Identifier means the unique property of the

node to be recognized and identifierValue depicts the particular

property value. It is also essential to provide the relationship

type to the crime node represented with the parameter relation-
shipToCrime. redFlagMultiple highlights serious crimes based

on the table II. similarityThreshold serves the same function

as before. Criminal pattern detection is carried out by, e.g.,

crimeAnalysis(‘Person’,’nhs no’,‘444-91-2379’, ‘PARTY TO’,
0.8)
while crime location pattern detection, is carried out by in-

voking, e.g., crimeAnalysis(‘Location’, ‘postcode’, ‘M5 3WT’,
‘OCCURRED AT’, 0.9)

F. Similarity measure

Algorithm 1 describes the proposed similarity measure.

Initially, the algorithm filters out all root user nodes (line

4). Then for each user node, it calls the searchSimilarGraphs
function (line 6). Neo4j graph database allows adding multiple

labels or properties to any node or an edge. So, we maintain

a configuration list (C) which is unique to a particular data

schema, includes labels and properties of nodes which need

to be matched through the algorithm. searchSimilarGraphs
function calculates the similarity score while searching for a

query graph in a data graph. If the calculated similarity score

is larger than or equal to a given similarityThreshold that data

graph is added to the result set (M).

Algorithm 2 explains the approach to search for similar sub-

graphs based on each user node. It consists of matchNode
(Def 2) and matchEdge (Def 3) functions to match nodes

and edges respectively. matchEdge has another feature that

Figure 3. Identify drug network using neighborhood measure (CD)

matchNode includes inside the matchEdge function to match

the end node. If an edge matches, it implies that both in and out

nodes are also matched. Moreover, matchNode and matchEdge
work based on the metadata in the configuration list (C). The

algorithm maintains a queue data structure to match data nodes

and store potential data nodes. Based on the query graph, it

only searches for respective potential nodes in the data graph.

Potential data nodes are identified according to the outgoing

edges of any matched node. Then these nodes are put into a

queue and considered as potential matches with query nodes.

This approach helps to avoid unnecessary traversal through the

whole data graph.

G. Neighborhood measure

Algorithm 3 explains the proposed neighborhood measure.

This is introduced as an aggregating schema to measure col-

lective indicators exhibited by a particular person and his/her

known associates. Before calling this function, it retrieves

the connected user group (neighbors) for a particular user

and takes the neighbors set as an input parameter(N). Then

it performs the searchSimilarGraphs function (Algorithm 2)

for each neighbor to get matched graphs (line 5). The key

point here is that a neighbor should perform at least one

different indicator compared to the particular user. Then only

that neighbor is considered as an eligible contributor to a

team/group. In that way, it checks whether each neighbor

could be a potential person who contributes to achieve a

set of indicators in the query graph as a group of people.

updateCollectives function maintains collective indicators of a

group and that indicator set is matched with the query graph.

The checkEligibility function checks the neighbor’s eligibility

of being a contributor to a team or a group by checking

he/she has performed at least an additional indicator than the

particular user.

H. Example: Detecting drug networks

We provide an example of how the neighborhood measure

may be helpful in uncovering group involvement in crimes. In

the crime database, there are 2 charge types for drugs crimes,

namely ‘Possession of drugs’ & ‘Intent to supply’.

In this case, the query graph contains different drug charge

types and only ‘drugs’ as the crime type. All 3 crimes related

to Brian (Fig. 3) are drugs and charge type is ‘Possession
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Algorithm 3: searchNeighborMatchedGraphs
inputs : N : List of Neighbor nodes

Q : Query Graph

W : Red-flag multiple

C : Configuration List

M : Matched Graph

S : Matched Graph Score

output: NG : Set of matched graphs

1 initialCSet← updateCollectives(Q,M)
2 activityCSet← ∅
3 NG ← ∅
4 foreach n′ ∈ N do
5 MG ← searchSimilarGraphs(n′, Q,W,C)
6 nodeCSet← updateCollectives(Q,MG)
7 if checkEligibility(initialCSet, nodeCSet) then
8 activityCSet←

applyCollectives(activityCSet, nodeCSet)
9 NG ←MG

10 if checkSimilairtyScore(activityCSet) � S then
11 return NG;

Figure 4. Similairty measure for exact match (RD)

of Drugs’. He has a family relation with Jack who has been

charged for both ‘Possession of drugs’ and ‘Intent to supply’

and found with ‘packaged & loose cannabis’ too. So, there

is a high probability that Jack is Brian’s cannabis supplier.

Moreover, Jack was caught twice with cannabis in a certain

location (postcode – ‘M33 5HG’) and investigators can focus

on others related to that location to trace the drug network

further.

IV. EXPERIMENTS AND RESULTS

Several experiments are performed in different graph

database setups similarityMeasure, neighborhoodMeasure and

crimeAnalysis procedures in PINGS library. The query perfor-

mance was also evaluated across different sizes of radicaliza-

tion datasets and the crime dataset.

A. Radicalization data analysis

Figure 4 depicts the results for an exact pattern match

(similarityThreshold=1 & redFlagMultiple=1) based upon the

query graph in Figure 2. As we explained, the query graph is

Figure 5. Similairity measure: Inexact match with similarityThreshold 0.7
(RD)

Figure 6. Neighborhood measure: Inexact match with similarity threshold 0.8
(RD)

also defined inside the dataset using different node label. So,

the left graph shows the query graph with the user id ‘U57’

and the right graph, user ‘U36’ is an exact match for the query

graph. Even though, the number of social media posts or social

media accounts are not matched exactly, it matched with all

other indicators while taking into account prioritized indicators

to be matched. In short, this validates our approach because

the query graph also retrieves an exact match which belongs

to the data graph too.

Some of the inexact match results are depicted in Figure 5

when the similarityThreshold is 0.7 and redFlagMultiple is 1.

Both persons ‘U52’ and ‘U83’ have demonstrated 5 (out of 6)

indicators and both used social media accounts to propagate

radicalized content. This is one of the major strengths of the

approach: it is able to detect lookalike suspicious behaviors

which is not exactly matched with a given query graph.

An exact match result of neighborhoodMeasure identifies

a group that collectively exhibits all the indicators in the

query graph and marks it as suspicious. It may be a team

who have already committed crimes and investigators may

be able to search for their other connections to eliminate

future threats. Moreover, the customized Neo4j procedure

allows investigators to find suspicious groups that are not

exact matches with the query graph by reducing the similari-
tyThreshold. Fig. 6, interprets an inexact match result (For a

better visualization, the social media details were truncated);
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Figure 7. Query graph for location ‘OL10 2JL’ (CD)

Figure 8. Exact crime patterns by location based on the query graph (CD)

all 4 persons who know each other have shown suspicious

activities. 3 of them indicate ‘Received training’, ‘Purchase

weapons’ and ‘Suspicious travel’. It is possible that these

individuals may have worked as a group and have or will

perpetrate an attack in the near future. At the very least,

it points to a group that warrants immediate investigation.

Investigative bodies are now empowered with knowledge of

potential involvement by other individuals in the group.

B. Crime location analysis

Figure 7 depicts the crime pattern for a location (postcode

– ‘OL10 2JL’) which was retrieved as the query graph. The

figure 8 shows some of the exact patterns of the other locations

based upon the query graph in figure 7.

C. Criminal analysis

Fig. 9. shows the crime pattern of the criminal called

‘Brian’. We just input the person’s identifier and it sponta-

neously picks his crime details and presents his crime pattern.

Figure 10 depicts the results when the similarity threshold

is reduced to 0.7. The crime patterns of ‘Alan’, ‘Kathleen’

and ‘Diana’ are fetched as somewhat similar crime patterns to

the crimes related to ‘Brian’. The database also fetches their

relationship (if one exists) and depicts whether they know each

other. So, this querying capability could be highly important

to investigators to identify other criminals with similar crime

patterns, to query for others who may have similar modus

operandi, as well as to trace the potential connections among

those criminals. Since, we are may not be definitively inter-

ested in the order in which a criminal committed his offenses,

the inexact similarity measure identifies somewhat likely crime

patterns irrespective of the order because we focus on crime

types and their categorization based on table II.

Figure 9. Query graph for person ‘Brian’ (CD)

Figure 10. Inexact (similarity threshold = 0.7) crime patterns by person (CD)

We also ran some query performance tests on Neo4j graph

databases. We use a machine with Intel i5 2.20GHz CPU

and 8GB RAM for all our experiments. We generate differ-

ent size of radicalization datasets using our data simulator.

We also maintain a similar the graph density in each case

where persons averaged 3 indicators. The table III depicts the

details of the radicalization datasets. similarityMeasure (SM)
and neigborhoodMeasure (NM) average query time for each

dataset size illustrates in figure 11. It runs for 2 scenarios as

exact match and inexact match (similarityThreshold – 0.8).

neigborhoodMeasure takes more time because it searches

all possible group combinations and similarityMeasure just

evaluates for individuals. While the dataset size is increasing,

the query time difference between the exact and inexact match

for each measure is also increasing. This basically occurs

because the number of group combinations to inspect in

the neigborhoodMeasure is significantly increased with the

number of the persons.

We also check the query time for the crime dataset for

crimeAnalysis procedure by locations. The dataset consists 369

criminals, all together 61521 nodes and 105840 edges. Figure

12 interprets the results and the average inexact query time is

slightly higher than the exact match queries. When the graph

size (number of crimes in a graph) increase, the query time

has an exponential trend after 10 crime nodes per graph.

Table III
CHARACTERISTICS OF RADICALIZATION DATASETS

Dataset 1 Dataset 2 Dataset 3 Dataset 4
No of persons 100 1000 10000 100000
No of nodes 979 9627 96590 966572
No of edges 909 8178 78590 784053
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Figure 11. Avg. query time vs no of crimes involved in a graph (RD)

Figure 12. Avg. query time vs no of crimes involved in a graph (CD)

V. CONCLUSION & FUTURE WORK

Investigative graph search based on inexact pattern matching

was presented using graph databases. Results using a syn-

thetically generated radicalization graph database and a real

crime graph database depict the accuracy and the efficiency

of the proposed investigative graph search. We show how

features in graph databases can be efficiently applied for

investigative use cases. A database library (PINGS) with a

set of custom procedures and comprehensive details are made

available in [17]. We demonstrated the capabilities of PINGS

library and described its similarity scoring mechanisms to

identify potential suspects, groups, and patterns.

The use of timestamps of activities to enhance the search

outcomes are being developed. The complexity analysis for

algorithms and multi-threaded search procedures to improve

the query performance will be constructed. Moreover, the

query performance in distributed large graph databases will be

inspected to further scale-up the proposed investigative graph

search.
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