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Abstract
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1 INTRODUCTION

Discrete bidding in English auctions is the norm in the real world, although substantial variations in the

exact characteristics of these auctions are observed. In most English auctions, admittedly, the discrete

bids are endogenous, possibly a function of several factors, including number of bidders, (expected)

bidders’valuations, etc. In auctions at Sotheby’s or Christie’s, bidding usually advances between 5%

and 10% of the current price level (Rothkopf and Harstad, 1994). However, there are many examples

where the bids are exogenously given. Cassady (1967) gives examples of auctions in which the bid levels

are known, such as the tobacco and livestock auctions in the USA. In wholesale fish markets, ascending

or English (Graham, 1999, p. 181) and descending or Dutch (Guillotreau and Jimenez-Toribio, 2011)

electronic auctions are commonly used, where the former (electronically) replicates the traditional oral

ascending auctions; known discrete bid increments are a common feature in both these auction types

(Carleton, 2000, pp. 10-11).

Milgrom and Weber (1982) analysed a particular version of the English auction, the so-called

Japanese-English Auction (henceforth JEA), commonly known as clock auction, in which the price

of the object increases continuously and the bidders decide to stay or drop out. In real world examples

of JEA, the price actually increases in discrete increments. For example, in the Looe wholesale fish

auction (UK), the increments are anywhere from 1p to 5p or 10p and sometimes different increments

are used for different species during the same auction session. Online auction sites, such as eBay, use

variants of such English auctions, adapted to the online world (Bajari and Hortaçsu, 2004), where bid

increments are also discrete (and depend on the price level).

In order to incorporate this common feature of real world English auctions, the set-up in this paper

(as originally presented in Gonçalves and Ray, 2017) is the same as the usual JEA except that the price

goes up in discrete commonly known bid levels. In our game, as in the usual JEA, if a bidder wants to

drop out, all he has to do is release the button. The final auction price is equal to the highest bid level

at which at least one bidder was active. We use the so-called “wallet game”with two bidders (in which

the common value of the good is simply the sum of two private signals, the amounts in the “wallets”

of each bidder), introduced by Klemperer (1998), as our background common game to theoretically

analyse a JEA with discrete bid levels. Klemperer (1998) illustrated that bidding twice the individual

signal forms the unique symmetric (Bayesian-Nash) equilibrium in this game. However, with discrete

bid levels, Gonçalves and Ray (2017) proved that one cannot construct a symmetric equilibrium using

strategies analogous (in a discrete bids’ environment) to bidding twice the private signal. Our aim

here is thus to theoretically characterise the equilibria of a JEA in a common value environment with

exogenously specified discrete bid levels.

There are real-life examples that (sort of) fit our model. In eBay, it is not all that rare to specify
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that bids cannot start below a given price, say, $49, and must be a multiple of $1 with the last digit 9;

however, the assumption of a commonly known upper limit does not hold there.1 Bidding at the online

auction site QXL was also quite similar to our model: the price went up in predetermined increments

and if bids were not a multiple of that increment, then the bid was rounded down to the closest multiple

of the increment. QXL bidding increments depended on the bid value; for example, for bids in the

£2.50−£9.99 range, the bid increment was £0.10 while for bids in the £10−£99.99, it was £1.00 and

so on.

In the recent past, English auctions with predefined discrete bid levels have been analysed (Rothkopf

and Harstad, 1994; Yu, 1999; Sinha and Greenleaf, 2000; Cheng, 2004; David et al, 2007; Isaac et al,

2007); for example, Yu (1999), in a private value setting with discrete bid increments, found multiple

equilibria: depending on whether bidders’valuations are above (or below) certain thresholds, the bid-

ders choose different (equilibrium) strategies. However, we note that the existing (above-mentioned)

literature on discrete bids for single object auctions has focussed entirely on private value environments;

virtually nothing has been done for the common value model. There is a vast literature on both multi-

object and multi-unit auctions, some of which considers discrete bidding (see, for example, Brusco and

Lopomo, 2002; Ausubel, 2004; Engelbrecht-Wiggans and Kahn, 2005). However, this literature also

mainly refers to private values; for example, Ausubel (2004) modeled the auction increments through a

price clock with either integer (steps) or continuous increases. Interestingly, and of relevance to our pa-

per, Ausubel (2004) used discrete increments only in the private values case while the proposed (novel)

ascending auction under an interdependent value formulation (a generalisation of both the private and

common value models) is analysed under continuous bid increments.

Following the seminal experiment by Avery and Kagel (1997) on a continuous-bid JEA based on the

wallet game, Gonçalves and Hey (2011) studied discrete bids in an experiment; however there has been

no attempt to analyse the equilibria for this game theoretically apart from the recent contribution by

Gonçalves and Ray (2017). Following their work, we are now taking the first step to fully characterise

the set of equilibria for the wallet game in a JEA with discrete bids.

In this paper, we show that (symmetric) partition equilibria, involving weakly increasing strategies

based on elements of a partition of the signal space, exist for the wallet game in a JEA with discrete bid

levels. Such partition equilibria may be pooling or separating (depending on the number of partitions).

We illustrate several such equilibria with only two or three discrete bid levels (with certain parametric

restrictions). These equilibria, however, yield a lower expected revenue for the seller than in the case

of a continuous JEA. Despite this, we further show that a revenue-maximising second best solution for

this set-up exists; that is, the seller may choose these bid levels optimally to maximise the revenue.

These results are, in our opinion, interesting and novel from a theoretical viewpoint, but also are of

1We thank Ron Harstad for providing this example.
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practical interest for real world auctions. First, our partition equilibria with discrete bid levels suggest

that (expected) seller’s revenue may be lower than in a continuous JEA. By adequately choosing both

the number and the values of discrete bid levels, the seller may minimise this loss. Naturally, the

seller also benefits from discrete bid levels in ways that our model does not capture. For instance, the

auction-speed may be higher which is an important variable to consider when auctioning certain goods.

In addition, by definition, JEA preclude the possibility of jump-bidding equilibria, which could hurt the

auctioneer (Avery, 1998; Isaac et al, 2007).

Second, the (symmetric) partition equilibria that we find may appear to be complex in the way they

are calculated, but they do point to very simple rule-of-thumb strategies that bidders may resort to: for

example, with two discrete bid levels, if the signal is higher than a threshold, bid high; otherwise, bid

low. The experimental literature on ascending auctions presents multiple (similar in nature) examples

of simple strategies that are actually played (for instance, see Kagel, 1995; Kagel and Levin, 2016),

although in most of those cases, such strategies are not equilibrium strategies, whilst our partition

equilibria strategies would be. In that context, our results may, in a way, bridge the divide between

theoretical and experimental work on ascending auctions.

2 MODEL

We consider the model originally presented in Gonçalves and Ray (2017).

2.1 Game (Gonçalves and Ray, 2017)

For the sake of completeness, we present the features of the game in Gonçalves and Ray (2017) in this

subsection.

Consider the wallet game with two symmetric risk-neutral bidders i ∈ {1, 2} bidding for one single

good with common value, Ṽ . Each bidder receives an independent and uniformly distributed2 private

signal xi ∼ U (0, 1), i = 1, 2. The (ex ante) unknown common value of the good is simply the sum of

the two signals: Ṽ = x1 + x2.

We use the JEA with some exogenously fixed discrete bids that are the elements of the set A =

{a1, ..., ak}, with 0 < a1 < ... < ak < 2, k ≥ 2 a finite integer; the set A is common knowledge to the

bidders. We will denote a typical bid level by aj , for j = 1, ..., k, with the implicit assumption that

a0 = 0 and ak+1 = 2, for notational convenience whenever required in this paper.

In the JEA we consider, the price goes up in discrete bid levels in the set A starting from a1 and

ending at ak. The bidders have to keep pressing a button at each bid level to be actively bidding; a

2As in Gonçalves and Ray (2017), we take the uniform distribution as it is easier to analyse, however, any other specific

distribution could have been considered.
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bidder drops out of the auction at any stage by releasing the button. The final auction price is equal

to the highest bid level in which at least one bidder was active. Therefore, for any j = 1, ..., k − 1, if

one bidder is active at aj but not at aj+1 while his opponent is active at aj+1, then the latter wins

the auction and pays a price equal to aj+1; if both bidders are active at aj , but not at aj+1, then the

auction winner is decided at random with equal probabilities and the final price is aj ; finally, if both

bidders are active at the last bid level ak, the winner will be chosen at random with equal probabilities

and will pay the price ak. The net payoff to the (selected) winner in each of the above cases is the

realised value of x1 + x2 minus the price to pay while the payoff to the loser is 0. If no bidder is active

at a1, then the auction ends immediately and the payoff to either bidder is 0.

A strategy in this Bayesian game is therefore to choose (as in Gonçalves and Ray, 2017) a drop out

bid level as a function of the signal. Given a signal x ∈ (0, 1), a bidding strategy for a player thus

chooses 0 (which implies that the bidder is not active even at a1) or a bid level aj so that the bidder

will be active at aj but not at aj+1, where j = 1, ..., k (with ak+1 = 2). A typical strategy is denoted

by σ that is a function b(x) ∈ {0, a1, ..., ak} implying that the player with signal x is active until b(x).

As in Gonçalves and Ray (2017), the above JEA for the wallet game with k bid levels (a1, .., ak) will

henceforth be called Gk.

2.2 Strategies

In this subsection, we look at possible strategies of Gk. The following definitions are new concepts (not

present in Gonçalves and Ray, 2017) needed for the analysis in this paper.

Definition 1 A strategy σ = b(x) for Gk is weakly increasing (decreasing) if for all pair of signals x

and y, x > y, b(x) ≥(≤) b(y).

Theoretically, there are strategies that are neither weakly increasing nor weakly decreasing. For

example, consider a strategy σrat for which b(x) = am, when x is a rational number and b(x) = an,

otherwise for some m and n.

Understandably, bidders may not wish to use the strategy 0. Formally,

Definition 2 A strategy is called active if it never chooses 0 for any signal, i.e., the bidder is active at

least at a1 for any signal x. A strategy is called inactive if it chooses 0 for at least one signal, i.e., the

bidder is inactive even at a1 for some signal x.

A natural type of strategy one may think of is a strategy that divides the domain of the signal x,

the interval (0, 1), into (l+1) subintervals or elements of a partition using l (≥ 1) many cut-off signals.

In the rest of the paper, we (ab)use the word “partitions”to mean “elements of a partition”.
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Definition 3 A partition strategy for Gk is a strategy that uses l (≥ 1) cut-off points and thus (l + 1)

partitions of the interval (0, 1), and chooses an element from the set {0, a1, ..., ak} for each of these

partitions.

Note that l = 0, which implies no cut-off signal and therefore no partition, also generates a feasible

strategy; in such a strategy, only one bid level is picked for the whole set of signals, the interval (0, 1).

Definition 4 In Gk, a strategy is called a babbling strategy, if regardless of the signal, the bidder

chooses either 0 or a particular bid level aj, j = 1, ..., k, i.e., for any x ∈ (0, 1), b(x) = c for some

c ∈ {0, a1, ..., ak}. In an active babbling strategy, b(x) = c for some c ∈ {a1, ..., ak}, for all x ∈ (0, 1).

b(x) = 0, for all x ∈ (0, 1) is the inactive babbling strategy.

Obviously, there are strategies that are not partition strategies; for example, the above mentioned

σrat is not a partition strategy. Also, a partition strategy may be neither weakly increasing nor weakly

decreasing. For example, consider G2 with two bid levels, L and H and think of a strategy written

using two cut-offs x∗ and y∗ as:

σ =


L if x ≤ x∗

H if x∗ < x ≤ y∗

L if x > y∗

We now focus on a specific subset of the strategy sets in Gk and make the following assumption.

Assumption 0. All the bidders use weakly increasing partition strategies only.

The JEA for the wallet game with k bid levels (a1, .., ak) with weakly increasing partition strategies

only is our baseline game and we henceforth call it G0k.

A non-babbling strategy in any G0k can be written in terms of some cut-off signals x
∗
c , c = 1, ..., l,

where 0 < x∗1 < ... < x∗l < 1 and l ≤ k that divide the interval (0, 1) into (l+1) partitions and associates

an element of {0, a1, ..., ak} to each partition in an increasing order. Such a non-babbling strategy, σ,

can be easily associated with a certain probability distribution over the set {0, a1, ..., ak}, as determined

by the partition(s). A babbling strategy is clearly associated with a degenerate distribution (probability

1 on one element of the set {0, a1, ..., ak}).

In the following subsection we formally define an equilibrium of the game G0k, with k ≥ 2, using the

standard notion of Bayesian-Nash equilibrium with usual expected payoffs.

2.3 Partition Equilibria

In this subsection, we characterise different kinds of equilibria using partition strategies. We further

focus on active partition strategies to find equilibria in G0k, with k ≥ 2. Clearly, using Definitions 1, 2

and 3, for any active weakly increasing partition strategy the number of cut-offs, l, must satisfy l ≤ k−1.
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Definition 5 For any k ≥ 2, an active weakly increasing partition strategy with l many cut-offs is called

separating if l = k − 1,

Clearly, for k = 2, an active weakly increasing partition strategy is either babbling or separating

with a single cut-off.

Definition 6 For k > 2, an active weakly increasing partition strategy with l many cut-offs is called

pooling if 1 ≤ l < k − 1.

Definition 7 In G0k, where k > 2, a separating strategy is an active weakly increasing partition strategy

that uses k − 1 cut-offs (x∗1, ..., x∗k−1) and thereby k partitions; it can be written as:

σ =


a1 if x ≤ x∗1

aj if x∗j−1 < x ≤ x∗j , j = 2, ..., k − 1

ak if x > x∗k−1
In G02, with 2 bid levels (a1, a2) and one cut-off x

∗, a separating strategy σ can be written as: σ =

a1 if x ≤ x∗ and a2 otherwise.3

Similarly, one may also formally define and express any pooling strategy, in G0k, with k > 2, using l

(< k − 1) cut-offs.

As mentioned earlier, a non-babbling partition strategy, σ, can be interpreted as a probability

distribution. For example, for k > 2, the separating strategy in Definition 5 above is a strategy in which

the bidder chooses a1 with probability x∗1, aj with probability (x
∗
j − x∗j−1), j = 2, ..., k − 1 and ak with

probability

(
1−

k−1∑
j=1

x∗j

)
. The probabilities for a pooling strategy can also be similarly identified.

We may now define a partition equilibrium, using the above partition strategies. As mentioned earlier,

we are going to consider symmetric equilibria only. An equilibrium in symmetric partition (babbling)

strategies is a strategy profile in which both bidders play the same partition (babbling) strategy.

A symmetric separating (pooling) partition equilibrium can be characterised by a separating (pool-

ing) strategy with usual (Bayesian-Nash) equilibrium conditions. The equilibrium conditions are: i.

indifference at the cut-offs, ii. incentive constraints for each partition, iii. activation constraint (active

at a1) which implies the participation constraint (at the beginning of the auction) and iv. feasibility

constraints for the cut-off points. One can thus define and characterise such a partition equilibrium

using these conditions.

Definition 8 In G0k, a symmetric strategy profile (σ1, σ2) is called a separating equilibrium if each

bidder i uses the same separating strategy σi with k − 1 cut-offs (x∗1, ..., x∗k−1) with all of the following
3 In this definition, we have used, without any loss of generality, the weak inequality on the left hand side of the cut-off

(as the signal is generated using a continuous distribution). One may define a partition strategy with the weak inequality

on the right hand side of the cut-off in which case the following equilibrium analysis needs to be modified accordingly.
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conditions satisfied.4

u1 (aj , σ2)|x1=x∗j = u1 (aj+1, σ2)|x1=x∗j , j = 1, ..., k − 1 [indifference conditions]

u1 (a1, σ2) > u1 (ah, σ2) if x1 ≤ x∗1, h > 1 [incentive constraint for the first partition]

u1 (ak, σ2) > u1 (ah, σ2) if x1 > x∗k−1, h < k [incentive constraint for the last partition]

u1 (aj , σ2) > u1 (ah, σ2) if x∗j−1 < x1 ≤ x∗j , j = 2, ..., k − 1, h 6= j [incentive constraints for all other

partitions, needed only for k > 2]

u1 (a1, σ2) ≥ u1 (0, σ2) = 0 if x1 ≤ x∗1 [activation constraint] implying u1 (a1, σ2)|x1=0 ≥ 0 [partici-

pation constraint]

0 < x∗1 < ... < x∗k−1 < 1 [feasibility constraints]

Similarly, one may write down the equilibrium conditions for a (symmetric) pooling equilibrium5 or

even a (symmetric) babbling equilibrium. The conditions for a babbling equilibrium clearly involve just

the incentive constraint and the participation constraint.

3 RESULTS

We focus only on symmetric equilibria for the game G0k, with k ≥ 2, in the rest of our paper. As it is

well-known, the symmetric (Bayesian-Nash) equilibrium for the JEA with continuous bids is given by

bid functions b∗i (xi) = 2xi, i = 1, 2, as derived by Milgrom and Weber (1982), in a general model, and

later specifically for the wallet game by Klemperer (1998) and Avery and Kagel (1997). Gonçalves and

Ray (2017) proved that this “twice-signal bidding”strategy is not an equilibrium in Gk (and therefore

not in G0k either). Although twice-signal bidding is not an equilibrium G0k, we will show that other

equilibria exist for our game in the next subsection.

Unfortunately, it is extremely diffi cult to analytically solve the above set of constraints (as in Defin-

ition 8) and thereby find all partition equilibria for G0k, particularly when k is not small. The analysis

is understandably easier for G02 or G
0
3. In the next subsection, we will consider G

0
2 and G

0
3 and show

examples of symmetric partition equilibria in such games.

3.1 Separating Equilibrium in G02

Consider any given G02; let us denote the bid levels by L (low) and H (high); that is, k = 2 with a1 = L

and a2 = H.

Any separating strategy here can be written in terms of a cut-off signal x∗; a separating strategy for

some x∗, 0 < x∗ < 1, is thus:

4Abusing notations for the expected payoff from a partition strategy.
5We do understand that our use of the phrase “pooling equilibrium” is not standard in the literature.
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σ2S =

 L if x ≤ x∗

H if x > x∗

In a symmetric separating equilibrium, each bidder thus plays L with probability x∗ (the probability

that x ≤ x∗) and H with probability (1− x∗), that is, the strategy σ2S can be associated with the

distribution (x∗; 1− x∗) over L and H. Further, to construct an equilibrium, we make the following

assumption on the values of L and H.

Assumption 1. L < 1
2 and L+

1
2 < H < 3

4 +
L
2 .

Note that Assumption 1 in turn impliesH < 1. We are now ready to present a separating equilibrium

of this game.

Proposition 1 Under Assumption 1, the separating strategy σ2S = (x∗; 1− x∗), with x∗ = 2H−1
2(1+L−H) ,

constitutes a symmetric separating equilibrium of G02.

Proof. We first compute the (expected) payoffs for a bidder from the partition strategy profile;

without loss of generality, we consider bidder 1. When bidder 2 has a signal x2 ≤ x∗ and bids L, using

the uniform distribution, bidder 1 expects bidder 2 to have a signal realisation equal to x∗/2; similarly,

when bidder 2 has a signal x2 > x∗ and bids H, bidder 1 expects bidder 2 to have a signal realisation

equal to (1 + x∗) /2.

Bidder 1’s expected payoffs thus are given by: u1
(
L, σ2S

)
= x∗. 12 (x1 +

x∗

2 − L) + (1 − x
∗).0 and

u1
(
H,σ2S

)
= x∗.(x1 +

x∗

2 −H) + (1− x
∗) . 12 .(x1 +

1+x∗

2 −H).

Setting the indifference condition (as in Definition 8) u1
(
L, σ2S

)
= u1

(
H,σ2S

)
, we get x∗ =

2x1+1−2H
2(H−L) , which implies that when x1 = x∗, u1

(
L, σ2S

)
= u1

(
H,σ2S

)
provided x∗ = 2H−1

2(1+L−H) .

Substituting this cut-off x∗ in the expected payoffs, we obtain

u1
(
L, σ2S

)
− u1

(
H,σ2S

)
= 1

4
2H−1−2x1(1+L−H)

1+L−H = 1
2 (x

∗ − x1).

Hence, for bidder 1, if x1 > x∗, we have u1
(
H,σ2S

)
> u1

(
L, σ2S

)
, that is, with a high signal

realisation (above x∗), bidder 1 prefers to bid H, and when x1 ≤ x∗, we have u1
(
L, σ2S

)
> u1

(
H,σ2S

)
,

that is, with a low signal realisation (below x∗), bidder 1 prefers to bid L, which confirms the desired

equilibrium condition (incentive constraint as in Definition 8).

We now have to confirm the feasibility constraint that x∗ ∈ (0, 1); this is guaranteed by Assumption

1 as x∗ > 0⇔ H > 1/2 and x∗ < 1⇔ H < 3
4 +

L
2 .

Finally, we need to check the activation (and thus the participation) constraint that the payoffs

cannot be negative (otherwise bidders would prefer not to be active) at L. As u1
(
L, σ2S

)
is increasing

in x1, we just need to ensure that u1
(
L, σ2S

)∣∣
x1=0

= (1−2H)(1+2L)(2L+1−H)
16(H−L−1)2 > 0.

The above is indeed true; the denominator is always positive and for the numerator to be positive

we must have either H < 1/2 and H < L+1/2, which we disregard because it would not yield a positive

cut-off x∗, or we must have H > 1/2 and H > L+ 1/2, which is guaranteed under Assumption 1.
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It is also easy to show that the above partition equilibrium is indeed unique (in weakly increasing

symmetric strategies). Clearly, there are only two potential candidate profiles which are based on two

babbling strategies of staying active until L or H regardless of the signal. We denote these profiles by

(L,L) and (H,H) respectively and prove that neither of them is an equilibrium.

Corollary 1 Under Assumption 1, the separating strategy profile (σ2S , σ2S), where, σ2S = (x∗; 1− x∗),

with x∗ = 2H−1
2(1+L−H) , is the unique symmetric (Bayesian-Nash) equilibrium of G02.

Proof. To show uniqueness, we just need to prove that (L,L) and (H,H) cannot be an equilibrium.

To prove that (L,L) cannot be an equilibrium, we note that there are realisations of x1 for bidder 1 for

which bidding L is not a best response against L. To see this, take 1 > x1 > 1− 2( 34 +
L
2 −H). In this

case, u1 (H,L)−u1 (L,L) = (x1+ 1
2−H)−

1
2 (x1+

1
2−L) > 0 (as, by Assumption 1, 1−2(

3
4+

L
2 −H) < 1).

Similarly, we prove that (H,H) cannot be an equilibrium by showing that there are realisations of x1

for bidder 1 for which bidding H is not a best response against H. To see this, take 0 < x1 < H − 1/2.

Here, u1 (L,H)− u1 (H,H) = 1
2 (H −

1
2 − x1) > 0.

The above results thus fully characterise the equilibrium of any G02 satisfying Assumption 1, as the

following example illustrates.

Example 1 Consider two specific values for L and H, namely, L = 1/5 and H = 4/5, satisfying

Assumption 1. In this case, from Proposition 2, we have x∗ = 3/4. Hence, in the unique symmetric

equilibrium of this game, a bidder is active at L (but not at H) if and only if the signal is less than or

equal to 3/4. Bidder i’s payoff, ui, from this equilibrium strategy profile is given by ui = 3
8xi +

21
320 if

xi ≤ 3/4 (in which case bidder i plays L) and ui = 7
8xi −

99
320 if xi > 3/4 (in which case bidder i plays

H).

3.2 Pooling Equilibria in G03

Now we consider G03 to provide some examples of pooling equilibria. Let us denote three bid levels by

L (low), M (medium) and H (high); that is, k = 3 with a1 = L, a2 = M and a3 = H. We illustrate

three different types of pooling equilibria with three bid levels in the following subsections.

3.2.1 Illustration 1

In this illustration, we use the parameter values from the previous subsection (G02) and extend it to a

specific G03. We take any values of L and H satisfying Assumption 1 and call them L andM respectively

(Assumption 1′ below) and make a further assumption (Assumption 2) on H as below, to construct a

pooling equilibrium.

Assumption 1′. L < 1
2 and L+

1
2 < M < 3

4 +
L
2 .
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Assumption 2. H > 3
4 +

M
2 +

2M−1
8(1+L−M) .

Clearly, Assumption 1
′
is same as Assumption 1 with renamed parameters. We now construct a

pooling equilibrium using the same cut-off as in Proposition 2. Let us consider the following partition

strategy:

σ3P1 =

 L if x ≤ x∗

M if x > x∗

Clearly the above strategy is a pooling strategy as the bid level H is not used. In a symmetric

profile, each bidder plays L with probability x∗ and M with probability (1− x∗), that is, the strategy

σ3P1 can be associated with the distribution (x∗; 1− x∗; 0) over L, M and H. We now prove that this

strategy profile is an equilibrium for this game (following the proof of Proposition 2).

Proposition 2 Under Assumptions 1
′
and 2, the partition strategy σ3P1 = (x∗; 1 − x∗; 0), with x∗ =

2M−1
2(1+L−M) , constitutes a symmetric pooling equilibrium of G03.

Proof. We first compute bidder 1’s expected payoffs under this partition strategy profile which

turns out to be:

u1
(
L, σ3P1

)
= x∗ 12

(
x1 +

x∗

2 − L
)
; u1

(
M,σ3P1

)
= x∗

(
x1 +

x∗

2 −M
)
+(1− x∗) 12

(
x1 +

1+x∗

2 −M
)
.

The indifference condition (as in Definition 8), u1
(
L, σ3P1

)
= u1

(
M,σ3P1

)
, is satisfied provided

x∗ = 2M−1
2(1+L−M) .

Using this cut-off, we obtain u1
(
L, σ3P1

)
− u1

(
M,σ3P1

)
= 1

2 (x
∗ − x1); therefore the incentive

constraints u1
(
L, σ3P1

)
> u1

(
M,σ3P1

)
if x1 < x∗ (and thus the constraint u1

(
L, σ3P1

)
> u1

(
H,σ3P1

)
if x1 < x∗) and u1

(
M,σ3P1

)
> u1

(
L, σ3P1

)
if x1 > x∗ are all satisfied.

Hence, we just need to prove that bidder 1 does not deviate and play H when x1 > x∗, that is, we

must have u1
(
H,σ3P1

)
− u1

(
M,σ3P1

)
< 0 if x1 > x∗. Note that u1

(
H,σ3P1

)
− u1

(
M,σ3P1

)
= 1

2x1 +

1+x∗

4 −H+ M
2 . Substituting the value of x

∗ and setting x1 = 1 (the highest possible signal), we confirm

that this payoff difference is indeed negative under Assumption 2 (that is, H > 3
4 +

M
2 +

2M−1
8(1+L−M) ).

Finally, using the proof of Proposition 1, here as well we have the feasibility constraint and the

activation (thus participation) constraint satisfied.

To illustrate the above, we may use the values in Example 1.

Example 2 Take L = 1/5, M = 4/5 and H = 7/5, satisfying Assumptions 1
′
and 2. As in Example

1, here as well, we have x∗ = 3/4. Thus in this symmetric pooling equilibrium of this game, a bidder is

active at L (but not at M or H) when the signal is less than or equal to 3/4 and active at M (but not

at H) when the signal is bigger than 3/4. Bidder i’s payoff, ui, from this equilibrium strategy profile is

given by ui = 3
8xi +

21
320 if xi ≤ 3/4 (in which case bidder i plays L) and ui =

7
8xi −

99
320 if xi > 3/4 (in

which case bidder i plays M).
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3.2.2 Illustration 2

In this illustration, we will use different parameter values to construct another pooling equilibrium for

any given G03; we make the following assumptions.

Assumption 1
′′
. L < 1

2 and 2L < M < 3
4 +

L
2 .

Assumption 3. H = 1
2 + 2M − L.

Let us consider the following partition strategy:

σ3P2 =

 L if x ≤ x∗

H if x > x∗

In this pooling strategy the bid level M is not used. Here, the strategy σ3P2 can be associated with

the distribution (x∗; 0; 1− x∗) over L, M and H. We now prove our next result.

Proposition 3 Under Assumptions 1
′′
and 3, the partition strategy σ3P2 = (x∗; 0; 1 − x∗), with x∗ =

4
3M −

2
3L, constitutes a symmetric pooling equilibrium of G03.

Proof. Following Definition 8, we need to show that the equilibrium conditions are satisfied at these

parameter values.

The indifference condition is met when x∗ = 4
3M−

2
3L as u1

(
L, σ3P2

)∣∣
x1=x∗

= u1
(
H,σ3P2

)∣∣
x1=x∗

=

2(2M−L)(M−L)
3 .

The activation (and thus participation) constraint is satisfied by Assumption 1
′′
as u1

(
L, σ3P2

)∣∣
x1=0

=

2(2M−L)(M−2L)
9 ≥ 0 when M > 2L.

Note that the feasibility constraint 0 < x∗ = 4
3M −

2
3L < 1 is satisfied under Assumption 1

′′
.

We now need to prove the incentive constraints for the two partitions below and above x∗.

To do this, take a small ε > 0 and x1 such that |x1 − x∗| = ε. It is easy to check that at x1,

u1
(
L, σ3P2

)
− u1

(
H,σ3P2

)
is ε

2 > 0, when x1 < x∗ and is − ε
2 < 0, when x1 > x∗. Similarly, at x1,

u1
(
L, σ3P2

)
− u1

(
M,σ3P2

)
is (2M−L)ε

3 > 0, when x1 < x∗ and is (L−2M)ε
3 < 0, when x1 > x∗ (by

Assumption 1
′′
). Finally, when x1 > x∗, at x1, u1

(
H,σ3P2

)
− u1

(
M,σ3P2

)
= (3−4M+2L)

6 ε > 0 (by

Assumption 1
′′
). Thus all the incentive constraints are satisfied.

We may illustrate the above result now using some specific parameter values.

Example 3 Take L = 1/5, M = 3/5 and H = 3/2, satisfying Assumptions 1
′′
and 3. From Proposition

4, we have x∗ = 2/3. Thus in this symmetric pooling equilibrium of this game, a bidder is active at L

(but not at M or H) when the signal is less than or equal to 2/3 and active at H when the signal is

bigger than 2/3. Bidder i’s payoff, ui, from this equilibrium strategy profile is given by ui = 1
3xi +

2
45 if

xi ≤ 2/3 (in which case bidder i plays L) and ui = 5
6xi −

13
45 if xi > 2/3 (in which case bidder i plays

H).

12



3.2.3 Illustration 3

In this illustration, we make the following assumptions on the parameters.

Assumption 4. M < 1
2 .

Assumption 5. H =M + 1
2 .

Let us now consider the following partition strategy:

σ3P3 =

 M if x ≤ x∗

H if x > x∗

In this pooling strategy the bid level L is not used. We may write the above strategy as σ3P3 =

(0;x∗; 1− x∗). We now prove that this strategy constitutes a symmetric equilibrium for this game.

Proposition 4 Under Assumptions 4 and 5, the partition strategy σ3P3 = (0;x∗; 1−x∗), with x∗ = 2M ,

constitutes a symmetric pooling partition equilibrium of G03.

Proof. Following Definition 8, we need to show that the equilibrium conditions are satisfied at these

parameter values.

The indifference condition is satisfied at x∗ = 2M , as u1
(
M,σ3P3

)∣∣
x1=x∗

= u1
(
H,σ3P3

)∣∣
x1=x∗

=

M2. The activation (and thus participation) constraint is trivially satisfied as u1
(
M,σ3P3

)∣∣
x1=0

= 0.

The feasibility constraint 0 < x∗ = 2M < 1 is met by Assumption 4.

We now need to prove the incentive constraints for the two partitions below and above x∗. To do

this, as in the proof of Proposition 4, we take a small ε > 0 and x1 such that |x1 − x∗| = ε. It is easy

to check that at x1, u1
(
M,σ3P3

)
− u1

(
H,σ3P3

)
is ε

2 > 0, when x1 < x∗ and is − ε
2 < 0, when x1 > x∗.

Similarly, whenever x1 < x∗, at x1, u1
(
L, σ3P3

)
−u1

(
M,σ3P3

)
= −M (2M + ε) < 0. Finally, whenever

x1 > x∗, at x1, u1
(
L, σ3P3

)
− u1

(
H,σ3P3

)
= −2M2 −Mε− 1

2ε < 0. Thus all the incentive constraints

are satisfied.

We may now illustrate the above result.

Example 4 Take L = 1/10, M = 2/5 and H = 9/10, satisfying Assumptions 4 and 5. From Proposi-

tion 5, we have x∗ = 4/5. Thus in this symmetric pooling equilibrium of this game, a bidder is active at

M (but not at H) when the signal is less than or equal to 4/5 and active at H when the signal is bigger

than 4/5. Bidder i’s payoff, ui, from this equilibrium strategy profile is given by ui = 2
5xi if xi ≤ 4/5

(in which case bidder i plays M) and ui = 9
10xi −

2
5 if xi > 4/5 (in which case bidder i plays H).

3.2.4 Multiple (Pooling) Equilibria

In this subsection, we show that there may exist two pooling equilibria in a given G03 (for given values

of the bid levels), using the illustrations in the previous subsection.
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It is clear that one cannot find values of three bid levels so that both pooling equilibria (σ3P1 , σ3P1)

and (σ3P3 , σ3P3) exist simultaneously (as Assumptions 1 and 4 for values of M are mutually exclusive).

Similarly, one cannot find values of three bid levels for which both pooling equilibria (σ3P2 , σ3P2) and

(σ3P3 , σ3P3) exist (as both Assumptions 3 and 5 cannot be satisfied by the same value of H).

However it is possible to find values of the bid levels such that both pooling equilibria (σ3P1 , σ3P1)

and (σ3P2 , σ3P2) exist simultaneously.

Note that any values of L and M satisfying Assumption 1
′
will also satisfy Assumption 1

′′
as for

any L < 1
2 , M > L + 1

2 implies M > 2L. Hence, we may find a set of numerical values for three bid

levels for which two pooling equilibria exist as the following example (similar to Example 2) illustrates.

Example 5 Take a G03 with L = 1/5, M = 4/5 and H = 19/10, satisfying Assumption 1
′
(and thereby

Assumption 1
′′
) and Assumptions 2 and 3. In this game, we have two different pooling equilibria,

(σ3P1 , σ3P1) and (σ3P2 , σ3P2), characterised by two different cut-offs, respectively, 3/4 and 14/15. First,

the symmetric pooling partition equilibria, (σ3P1 , σ3P1) exists (as in Example 2) in which each bidder

is active at L (but not at M or H) when the signal is less than or equal to 3/4 and active at M when

the signal is bigger than 3/4. Bidder i’s payoff, ui, from this equilibrium strategy profile is given by

ui =
3
8xi +

21
320 if xi ≤ 3/4 (in which case bidder i plays L) and ui =

7
8xi −

99
320 if xi > 3/4 (in which

case bidder i plays M). Second, the symmetric pooling partition equilibria, (σ3P2 , σ3P2) exists in which

each bidder is active at L (but not at M or H) when the signal is less than or equal to 14/15 and active

at H when the signal is bigger than 14/15. Bidder i’s payoff, ui, from this equilibrium strategy profile

is given by by ui = 7
15xi +

28
225 if xi ≤ 14/15 (in which case bidder i plays L) and ui = 29

30xi −
77
225

if xi > 14/15 (in which case bidder i plays H). One may compare these two equilibria by their ex-

ante expected payoffs (for each bidder i) that are respectively 43
160 (= 0.26875) for (σ

3P1 , σ3P1) and 323
900

(= 0.35889) for (σ3P2 , σ3P2); hence, the equilibrium σ3P2 is better for the bidders.

3.3 Seller’s Expected Revenue

We now focus on the seller’s expected revenue from all the equilibria stated in the previous subsections.

3.3.1 Revenue in G02

Consider the separating equilibrium (σ2S , σ2S) as presented in Proposition 1. The expected revenue

for the seller from this equilibrium is given by L when both players play L (occurs with probabil-

ity (x∗)2) and H in all other cases (i.e., when at least one bidder bids H). Thus the seller’s ex-

pected revenue (R2S) is: R2S = (x∗) (x∗)L+ (x∗) (1− x∗)H + (1− x∗) (x∗)H + (1− x∗) (1− x∗)H =

L+4LH−4LH2+3H−4H2+4HL2

4(1+L−H)2 .

14



We observe that for all values of L and H satisfying our assumption, the seller’s expected revenue is

lower than in a JEA with continuous bids, E
[
P JEA

]
= 2/3 (see Avery and Kagel, 1997). The following

figure (Figure 1) displays this result, which is similar to that obtained by Rothkopf and Harstad (1994,

Proposition, p. 575) in a private values setting (insofar as the revenue from a discrete bidding auction

is lower than in its continuous counterpart).

E[PJEA]=2/3

R

Figure 1: Seller’s expected revenue for different bid

levels

Although G02 yields ‘lost revenue’ compared to the continuous case, it is possible to show that a

second-best solution for the choice of L and H exists in this set-up.

Proposition 5 In the equilibrium (σ2S , σ2S) as stated in Proposition 1, seller’s expected revenue is

maximised when L∗ = 1/4 and H∗ = 3/4, yielding x∗ = 1/2 and R2S
∗
= 5/8.

Proof. In order to obtain the revenue-maximising values of L and H, we need to solve the following

optimisation problem (rearranging the inequality restrictions):

maxL,H R
2S = L+4LH−4LH2+3H−4H2+4HL2

4(1+L−H)2

subject to 1/2− L ≥ 0, H − L− 1/2 ≥ 0, 3/4 + L/2−H ≥ 0, L ≥ 0 and H ≥ 0.

We set up the Lagrangian as below, where yi are the multipliers:

Z = L+4LH−4LH2+3H−4H2+4HL2

4(1+L−H)2 + y1 (1/2− L) + y2 (H − L− 1/2) + y3 (3/4 + L/2−H)

We are now going to use the Kuhn-Tucker conditions for the above Langrangean. First, as we are

looking for L∗ > 0 and H∗ > 0, we have ∂Z
∂L = 0 and ∂Z

∂H = 0. Now, when ∂Z
∂y2

= H − L − 1/2 = 0
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(that is, when H = L+1/2), we have y2 > 0 and the expected revenue is a concave function of L. This

implies ∂Z
∂y1

= 1/2− L > 0 and also ∂Z
∂y3

= 3/4 + L/2−H > 0, thereby y1 = 0 and y3 = 0.

Thus we have three equations, namely, ∂Z∂L = 0,
∂Z
∂H = 0 and ∂Z

∂y2
= 0 that we can solve with respect

to L, H and y2. Solving these, we get L∗ = 1/4 and H∗ = 3/4 (with y∗2 = 3/4). For these optimal bid

levels, R2S
∗
= 5/8.

In the second best solution, “the loss of revenue” compared to the JEA with continuous bids is

approximately 6.3%. It is, although significantly higher than zero, not very high in percentage terms.

3.3.2 Revenue in G03

We now consider the seller’s revenue for each of the three pooling equilibria for any given G03 as described

above. For each case, we find the best parameter values that maximise the corresponding seller’s revenue.

First we consider the pooling equilibrium (σ3P1 , σ3P1) for G03 which is very similar to the separating

equilibrium (σ2S , σ2S) for G02. The seller’s revenue from the equilibrium (σ3P1 , σ3P1) is given by:

R3P1 = L+4LM−4LM2+3M−4M2+4ML2

4(1+L−M)2
.

It is obvious that we will have the same values for the parameters that maximise the seller’s revenue

here.

Corollary 2 Seller’s expected revenue from the equilibrium (σ3P1 , σ3P1) is maximised when L∗ = 1/4,

M∗ = 3/4 and H∗ = 5/4, yielding x∗ = 1/2 and R3P
∗
1 = 5/8.

Proof. The proof follows immediately from Proposition 5. Given the solutions of the Lagrangean

(as in the proof of Proposition 5) L∗ = 1/4 andM∗ = 3/4, we obtain H∗ = 3
4+

M∗

2 +
2M∗−1

8(1+L∗−M∗) = 5/4.

For these bid levels, x∗ = 1/2 and R3P
∗
1 = 5/8.

Note that, not surprisingly, R3P
∗
1 = R2S

∗
.

We now consider the pooling equilibrium (σ3P2 , σ3P2). The seller’s revenue from the equilibrium

(σ3P2 , σ3P2) is given by:

R3P2 = 28
9 LM −

16
9 M

2 − 1
3L+

1
2 +

2
3M −

10
9 L

2.

Proposition 6 Seller’s expected revenue from the equilibrium (σ3P2 , σ3P2) is maximised when L∗ = 1/4,

M∗ = 1/2 and H∗ = 5/4, yielding x∗ = 1/2 and R3P
∗
2 = 5/8.

Proof. The proof is similar to that of Proposition 5. Given the constrained maximisation problem,

we write down the corresponding Lagrangean and use the Kuhn-Tucker conditions. Solving, we get

L∗ = 1/4 andM∗ = 1/2. Hence, H∗ = 1
2+2M

∗−L∗ = 5/4. For these bid levels, x∗ = 4
3M

∗− 2
3L
∗ = 1/2

and therefore R3P
∗
2 = 5/8.

Finally, we consider the pooling equilibrium (σ3P3 , σ3P3). The seller’s revenue from the equilibrium

(σ3P3 , σ3P3) is given by:
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R3P3 =M − 2M2 + 1
2 .

Proposition 7 Seller’s expected revenue from the equilibrium (σ3P3 , σ3P3) is maximised at M∗ = 1/4

and H∗ = 3/4, with any L < 1/4, yielding x∗ = 1/2 and R3P
∗
3 = 5/8.

Proof. The proof is straightforward. From the first order condition, we obtain M∗ = 1/4, in which

case H∗ =M∗+1/2 = 3/4. Any L < M∗ = 1/4 will thus be revenue-maximizing. In this case, x∗ = 1/2

and R3P
∗
3 = 5/8.

Observe that R3P
∗
1 = R3P

∗
2 = R3P

∗
3 = R2S

∗
. It is not really surprising if we carefully look at the

way the pooling strategies σ3P1 , σ3P2 and σ3P3 have been constructed as extreme points of a separating

equilibrium in a G03 (discussed in the next subsection) and hence the corresponding equilibrium profiles

(σ3P1 , σ3P1), (σ3P2 , σ3P2) and (σ3P3 , σ3P3) have the same payoffs.

3.4 Separating Equilibrium in G03: A Simulation

One may be interested in constructing a separating equilibrium for any given G03. Following Definition

7, a separating strategy for G03 with three bid levels, L, M and H can be written using two cut-offs x∗

(= x∗1) and y
∗ (= x∗2) as:

σ3S =


L if x ≤ x∗

M if x∗ < x ≤ y∗

H if x > y∗

From Definition 8, we can construct a symmetric separating equilibrium using the above strategy.

The profile (σ3S , σ3S) is an equilibrium if the following conditions are met.

u1
(
L, σ3S

)∣∣
x1=x∗

= u1
(
M,σ3S

)∣∣
x1=x∗

[indifference at x∗]

u1
(
M,σ3S

)∣∣
x1=y∗

= u1
(
H,σ3S

)∣∣
x1=y∗

[indifference at y∗]

u1
(
L, σ3S

)
> u1

(
M,σ3S

)
if x1 < x∗ [incentive constraint for the first partition]

u1
(
M,σ3S

)
> u1

(
L, σ3S

)
if x∗ < x1 < y∗ [first incentive constraint for the second partition]

u1
(
M,σ3S

)
> u1

(
H,σ3S

)
if x∗ < x1 < y∗ [second incentive constraint for the second partition]

u1
(
H,σ3S

)
> u1

(
M,σ3S

)
if x1 > y∗ [incentive constraint for the third partition]

u1
(
L, σ3S

)
≥ u1 (0, σ2) = 0 if x1 ≤ x∗ [activation constraint] implying u1

(
L, σ3S

)∣∣
x1=0

≥ 0 [partic-

ipation constraint]

0 < x∗ < y∗ < 1 [feasibility constraint]

As mentioned earlier, it is diffi cult to analytically characterise such an equilibrium, that is, it is hard

to find numerical values for x∗ and y∗ satisfying all the above constraints for any given values of L, M

and H. We thus present a simulation to indicate the existence of such an equilibrium for a fixed set of

values of L, M and H. We start off with L = 1/4 and M = 3/4; recall that these values maximise the

seller’s revenue from the equilibrium (σ2S , σ2S) with two bid levels. Coupled with these values, we take
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a range of values for H between 5/4 (= 1.25) and 7/4 (= 1.75). Note that, for the bid levels L = 1/4,

M = 3/4, and H = 5/4, we have the pooling equilibrium (σ3P1 , σ3P1) and for L = 1/4, M = 3/4, and

H = 7/4, we have the pooling equilibrium (σ3P2 , σ3P2). We vary the value of H and find values of x∗

and y∗ satisfying all the equilibrium conditions and thereby find a separating equilibrium in this case.

The following figure (Figure 2) shows the cutoffs x∗ and y∗ in the separating equilibrium for different

values of H (between 1.25 and 1.75 on the horizontal axis).

Figure 2: Cutoffs for separating equilibrium

In Figure 2, for each value of H (on the horizontal axis) we have two different dots: the lower curve

is for x∗ while the upper curve is for y∗. Take, for example, three different levels of H: H = 7/5,

H = 3/2 and H = 8/5. The approximate numerical values are the following:

H = 7/5 H = 3/2 H = 8/5

x∗ 0.734 0.782 0.801

y∗ 0.873 0.853 0.842

Seller’s Revenue 0.514 0.476 0.453

Note that at the two boundaries of the values of H, we have the pooling equilibria (σ3P1 , σ3P1) and

(σ3P2 , σ3P2) that can be interpreted as the two extremes of the separating equilibrium. The pooling

equilibrium (σ3P1 , σ3P1) is equivalent to a separating equilibrium with x∗ = 1/2 and y∗ = 1 in which H

is not played. Similarly, the pooling equilibrium (σ3P2 , σ3P2) is equivalent to a separating equilibrium

with x∗ = y∗ = 5/6 in which M is not played.

18



We can find the seller’s revenue from such a separating equilibrium, as displayed in Figure 3.

Figure 3: Seller’s revenue in pooling and separating

equilibrium

We observe that the revenue from any separating equilibrium here (revenue′ in Figure 3) is lower

than that of the pooling equilibrium (σ3P1 , σ3P1) which is equivalent to the equilibrium (σ2S , σ2S) with

two bid levels (revenue0 in Figure 3). Thus, we note that in this example, the seller strictly prefers the

pooling equilibrium (σ3P1 , σ3P1) to be played rather than the separating equilibrium for any suffi ciently

high H where these two types of equilibria coexist. Also, by the same token, we observe that two bid

levels are (weakly) better than three for the seller. However, it is important to note that if the seller

had the choice of all three bid levels, L = 1/4, M = 3/4 and H > 5/4 would in all likelihood not be

his revenue-maximising choices. But finding the optimal choice of L, M and H is not easy, even with

simulations. We conjecture that perhaps the revenue from the equilibrium (σ2S , σ2S) in G02 is (weakly)

higher than that from any (pooling or separating) equilibrium in G03.

4 CONCLUSION

In a JEA for the wallet game with continuous bid levels, we have shown that a partition equilibrium

based on cut-offs in signals exists where the bidders use only weakly increasing partition strategies.

We have characterised these equilibria that can be pooling or separating. We illustrated a few such
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equilibria with two and three discrete bid levels. Under our partition equilibrium, seller’s expected

revenue is strictly lower than that of the continuous JEA; the seller can, however, optimally choose

the bid levels to maximise the expected revenue. In this second best solution, the ‘loss of revenue’

compared to the JEA with continuous bid increments is not very high in percentage terms. Our paper

thus provides some understanding of how, once one fixes the number of bid levels, bid levels should be

optimally chosen by the seller.

The rationale behind our result is relatively straightforward: given discrete bid levels, the partition

equilibrium leads players to bid up to the lowest discrete bid level ‘too’often, and that reduces the

expected revenue compared to the continuous bidding JEA. With continuous bid levels the players can

easily infer (from the equilibrium strategies) their opponent’s signal and thus accurately calculate their

payoff. However, with discrete bid levels, such an accurate inference is no longer possible and bidding

up to the low bid level more often provides a ‘safety net’under such "uncertainty".

Our construction of equilibrium is somewhat similar to the recent work by Ettinger and Michelucci

(2016a) and Hernando-Veciana and Michelucci (2017) in a different environment: these results are all

related to a type of bunching which is somehow endogenously determined (in their papers, by jump

bids or by the choice of a 2-stage mechanism while in our work by the choice of the bid levels). Also,

Ettinger and Michelucci (2016b) analyses a simple example in which partitions can be induced by jump

bidding (Proposition 4 in their paper).

Needless to add, it is certainly an interesting question whether a general result for the set of equilibria

can be obtained in the games analysed in this paper for more than three bid levels. Future research

should characterise the set of all such partition equilibria for any number of discrete bids and other

(non-partition) equilibria, if any.

JEA with discrete bids may present other advantages to the auctioneer or to the bidders, such as,

reduced auction duration or an easier understanding of the rules that are particularly important issues

in online auctions. Thus, it may very well be the case that it becomes an even more attractive auction

format in the future, in which case more analysis should be devoted to this format than its continuous

bid counterpart.

Our research points out what the implications are of using a specific set of bid levels and how a

seller should optimally manipulate it. One may be interested in finding the optimal number of bid

levels for such an auction. Our simulation on three bid levels suggests that the optimal number of

bid levels (to maximise the seller’s revenue) is perhaps small. One may also be interested in testing

this hypothesis in a suitably designed experiment. In addition, whether our partition equilibria are

played is also a question well suited for experimental testing. In the very simple set-up, with two or

three discrete bid levels, although multiple (separating or pooling) equilibria exist, our analysis provides

helpful indications regarding equilibrium selection. These are likely to be the next steps in our research.
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