
INTRODUCTION
Heavy vehicles (i.e., trucks and buses) are part of the US critical 
infrastructure with the mission to carry out a significant portion of 
commercial and private business operations. However, little effort has 
been invested in cyber security for these mobile assets. Recent 
research efforts demonstrated security vulnerabilities in passenger 
vehicle controller area network (CAN) [1]. This, and related reports 
of CAN bus hacks, have put the heavy vehicle sector on notice to 
more quickly address cyber security issues. As such, a cyber-physical 
testbed is well suited to address the rapid developments in cyber 
security research.

As cyber assurance testing ensues, any identified threats should be 
well-founded with tested mitigation strategies in place. To provide 
the needed accuracy to demonstrate potential exploits and subsequent 
trust in mitigation strategies, a scalable high-fidelity testbed using 
actual heavy vehicle electronic control units (ECUs) is needed. The 
purpose of this paper is to detail the design and implementation of a 

testbed suitable for cyber assurance testing for commercial vehicles, 
with primary focus on Class 8 truck-tractors typically used in 
long-haul applications.

The concept of a testbed for networked embedded systems is already 
well-accepted in the Supervisory Control and Data Acquisition 
(SCADA) space. For example, Sandia National Laboratories has 
operated a SCADA security program since 1998, part of which is a 
SCADA testbed that allows researchers to test vulnerabilities and 
new security methods [2]. Similar testbeds are operated by other US 
national laboratories, as well as European countries [3]. As industrial 
process control/SCADA computers have a similar purpose as vehicle 
ECUs, namely to monitor and control physical phenomena, the 
proven usefulness of the testbed approach in the SCADA suggests the 
value of an automotive security testbed.
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Differences Between Commercial Vehicles and 
Passenger Cars
Although security attacks and countermeasures for automobiles might 
be valid for heavy vehicles, there are differences that create a 
distinctive threat landscape and necessitate dedicated security 
experimentation. The first difference is that heavy vehicles deploy a 
J1939 specified communication network, with open documentation as 
to packet definition and transmission. Passenger vehicles use distinct, 
higher-level communication protocols that may be proprietary, and 
thus, less open to the creation of attack vectors. For example, some 
cars have a proprietary CAN bus running from the Airbag Control 
Module to the Electronic Stability Controller that is accessible 
through either an end node or physically locating the wires within the 
car [4].

Finding vulnerabilities and attacking J1939 protocols have very 
severe consequences as they are used by almost all commercial heavy 
vehicles. The second difference is the fact that J1939 introduces a 
newer set of protocols that must be run above the CAN (physical) 
layer. Because the J1939 layers are modelled on the network OSI 
stack, many of these protocols have underlying resemblance with 
communication protocols used in computer networks. Thus, the 
attacks prevalent on computer networks may be adapted to vehicular 
networks adhering to the J1939 standards. For example, spoofing 
source and destination addresses used as part of the extended CAN 
identifier in J1939 may allow attackers to cause denial-of-service 
attacks like amplification and reflection.

While the J1939 network is founded on the same base CAN protocol 
that passenger vehicles use, heavy trucks follow a more horizontal 
integration to allow for customization. This customization can occur 
in the choice of engine, brake controller, telematics unit, stereo 
system, and other ECUs, which necessitates a more homogeneous 
network architecture than what is seen in passenger vehicles.

The third difference between heavy trucks and passenger vehicles is 
with respect to the universal usage of telematics and 3rd party devices. 
Fleet managers often install third party telematics units to connect the 
truck and driver to a back office server and logistics management 
system. Currently, there is no on-line mechanism in place for policing 
the J1939 network for standards compliance. Thus, it is possible for a 
heavy vehicle to be subverted through a third party system, and it is 
unclear if vehicle original equipment manufacturers (OEMs) can 
prevent such an attack.

Scope and Objective
The intention of this paper is to describe the design and testing of a 
cyber assurance testbed for discrete modules communicating on 
various vehicle communications networks with special emphasis on 
J1939. The implementation will leverage tools from IT security 
research that are applicable to heavy vehicles. Engineers and 
developers who lack the resources for creating such a testbed will be 

able to use it by virtue of remote access and user management 
interfaces. Finally, the testbed operation will be verified by 
conducting a set of cyber-security related experiments.

TESTBED HARDWARE ARCHITECTURE

Design Requirements
The design of the testbed is driven by customer requirements. The 
customer, in this case, is a cyber security researcher who has adequate 
background in computer science. The customer may be familiar with 
computer tools like disassemblers and decompilers. They look for 
patterns and vulnerabilities in network communications. Many are well 
versed in using command line tools and Linux. Often the researcher is 
familiar with TCP/IP protocols. They understand basic cryptography. 
However, the customer does not have access to a vehicle.

Providing access to heavy vehicle electronic parts to a security 
researcher should minimize cost and maximize utility. Effective cyber 
security research would likely take an actual vehicle out of service, 
which is an expensive proposition. This expense has likely reduced 
the exposure of commercial vehicles to the security research 
community; they have focused mainly on cars [5, 6]. The cost of an 
engine control module can rival that of a high performance laptop 
computer, so the cost target for the testbed will have to account for 
the actual cost of the modules and materials, but will be much less 
than the cost of an actual truck.

The testbed needs to be able to interact with both the cyber and the 
physical aspects of heavy vehicle systems. As such, sensor simulation 
is needed to provide the modules in the testbed with some simulated 
physical environments.

Limitations
While the testbed uses actual ECUs, it is not intended to replace 
traditional hardware-in-the-loop (HIL) testing. The primary focus 
for a cybersecurity based testbed is to affect network 
communications. As such, less emphasis is placed on sensor 
simulation and determinism.

The authors took some liberties with the construction of the testbed 
and did not always follow the manufacturer’s recommendation. 
Notably, many splices were made by crimping two wires into the 
same connector cavity. While electrical continuity is satisfied, the 
connections may not endure in an operational environment.

Topology
The structure of the testbed is designed to enable a researcher to log 
into a node and observe or affect network traffic on two ends of 
their controller. As shown in Figure 1, the common backbone 
connects different ECU nodes. Each node has, at a minimum, a 
node controller and an ECU. Some nodes have a sensor simulator to 
mimic physical sensor values. Some ECUs, like a telematics unit, 
do not need physical sensors connected, which is why a sensor 
simulator is optional.
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Figure 1. Testbed concept arrangement with node controllers separating each 
module from the backbone.

The testbed design starts with a communications backbone, which is 
shown in Figure 2. The backbone comprises the SAE J1939-13 9-pin 
connector and its signals [7]. The backbone has power, ground, 
J1939, J1708 and a second CAN network. Since the high current 
drawing functions, like firing injectors, are not part of the testbed, the 
backbone supplies power to each module through the J1939 
connector. The backbone is modular with each section having a 
receptacle housing, pin housing, and a stub with a consistent 
connector, which is a 10-pin Molex Mini-Fit-Jr connector in this case.

Figure 2. Backbone stub that gives each node access to the communication 
bus through the Molex 10-pin connector.

The unique feature of this testbed is that every engine control module 
(ECM) has its own remotely accessible node controller. The node 
controller is a Beagle Bone Black connected to a communications 
circuit board. This hardware is connected to both the backbone and 
the ECM that it is controlling. The circuits in the node controller can 
enable the device to be a filter and separate the networks, or it can 
connect the communications lines directly from the backbone to the 
ECM. Each node controller has the Beagle Bone Black device 
(denoted as the Node Controller in Figure 3). Since some devices 
need sensors and actuators to function, an additional sensor simulator, 
controlled by USB from the Beagle Bone, can be used as part of the 
node controller.

Figure 3. Physical layout of a basic testbed.

Each node controller is physically connected to an Ethernet switch, 
which is connected to the remote user management system. Through 
this network connection, remote users can log in and affect or observe 
network traffic to and from the backbone and the ECM in the node. 
They can also issue commands to affect the sensor simulation system. 
An additional serial debugging port from each Beagle Bone Black is 
made available for local access.

Table 1. Description of the items in the testbed shown in Figure 3.

The node controller runs ARM Linux and has firewall-like 
capabilities. It can run code written by the security researcher. The 
node controller also interfaces with the sensor simulation system by 
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USB. It can send commands and messages over the USB system to 
the microprocessor and peripherals that are programmed to emulate 
sensors and provide the ECM sensor values.

Node Controller Implementation
The node controller is built around a Beagle Bone Black single-board 
computer. The Beagle Bone Black sports the Texas Instruments 1GHz 
AM335x ARM® Cortex-A8 processor [4], which has two built-in 
CAN controllers, USB, and Ethernet. The operating system runs on a 
built-in eMMC chip with 4GB of capacity. The inexpensive computer 
interfaces with a custom built circuit card assembly that provides the 
following additional circuitry: 

•	 Power input, protection, and regulation 
•	 Two CAN Transceivers 
•	 Two J1708 Transceivers 
•	 CAN Bypass Relay 
•	 J1708 Bypass Relay 
•	 Serial debugging 
•	 Ethernet breakout 
•	 USB Host

The bypass relays are switched using GPIO pins from the Beagle 
Bone. When activated, the relays electrically connect the node ECU 
communication to the backbone, so they are always connected. When 
the relays are closed, the node controller cannot block network traffic. 
Instead, any network communications from either side will be 
transmitted or received on both the backbone and the node 
communication. In other words, the relays change the node controller 
from a man-in-the-middle to just another device connected to the 
communications bus.

Linux on the Beagle Bone
The node controller runs Ubuntu Linux with version 3.8 of the Linux 
kernel. The kernel contains modules for SocketCAN, which provides 
a socket interface to CAN hardware [8]. Kernel extensions exist for 
J1939 as well [9]. Command line open-source CAN utilities, such as 
candump and cangen, enable users to quickly set up meaningful 
experiments and logging functions. In fact, the default setting for the 
cangen command is to continuously send random messages on the 
network, which is effectively a simple fuzzing attack.

Of particular interest in the Beagle Bone and the AM335x processor 
is the availability of two on-board 200MHz programmable real time 
units (PRUs) [10]. These on chip peripherals are necessary to 
maintain the timing requirements for J1708 communications.

Linux-based J1708 Communications
Implementing J1939 [11] and ISO15765 [12] communication on a 
Linux computer was relatively simple, thanks to the existing driver 
ecosystem; all kernel-level operations had already been implemented 
in open-source software, and all physical and data-link layer 
operations for CANs are handled in hardware.

J1708, however, presents a design challenge due to the precise timing 
requirements. Since the hardware is abstracted in a Linux based 
system, the user space does not have access to low level timing 
functions and deterministic timing. As such, attempts to implement 
the J1708 communication as a program running in user space resulted 
in mishandling message frames frequently enough, even with a 
real-time kernel, to force an alternative, more deterministic, solution.

While the J1708 protocol is based on 9600 baud serial 
communication, and a UART can be configured in a fairly 
straightforward way to act as a J1708 transceiver, this only handles 
the physical layer of the protocol. While hardware J1708 and 
microprocessor code implementations exist, the goal was to reduce 
the amount of auxiliary processors on the printed circuit card and 
implement the protocol natively within the Beagle Bone Black, which 
has the TI AM335x processor.

As the TI AM335x System on a Chip (SoC) contains several 
on-board UART and GPIO modules, the chosen solution was to use 
those on-board modules to communicate on the J1708 bus. As 
messages on J1708 buses are delimited by quiet periods on the 
order of one millisecond in length, and message’s priority is 
determined by the number of bit times a sender waits after “bus 
quiet” to send it, determinism in the time that bytes are sent and 
received by the controlling program is essential to a properly 
functioning implementation.

The solution leveraged the real-time capabilities of AM335x’s 
Programmable Realtime Unit and Industrial Communication 
Subsystem (PRU-ICSS or PRU) to provide the necessary 
determinism. The PRU system includes two 200MHz RISC co-
processors on the SoC that can communicate with the main CPU 
core, as well as the on-board peripherals. The PRUs are specifically 
designed for deterministic execution: instructions take one cycle to 
complete, and there is no pipelining of instructions.

Operations where determinism is critical, i.e. bus arbitration and 
sending & receiving of messages, are carried out by the PRU.

Communication between the PRU and userspace programs is carried 
out by a privileged userspace process; a functional diagram outlining 
the implementation is given in Figure 4. It is possible to implement 
this in the Linux kernel.

The algorithm used by the driver is described in the J1708 standard 
[13]. Briefly, upon initialization the driver waits for 10 consecutive 
bit times of bus quiet to indicate that any subsequent characters 
received begin a new message. When a message is received, it is 
placed in a circular buffer in shared RAM and an interrupt is 
triggered to alert the userspace process to read it. Likewise, when a 
message is to be sent, the userspace process places the message in a 
different circular buffer and sends an interrupt to signal the PRU 
process that the message is to be sent when the next bus quiet 
condition exists. Loading of the PRU code and communication of 
interrupts between the PRU and userspace is handled using the PRU 
Userspace IO (UIO) driver provided by the kernel.
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Figure 4. Functional Diagram of a J1708 implementation on the Beagle Bone Black.

The benefit of this software-based approach is that it leverages 
widely-available commodity hardware, making production of new 
nodes easier and less costly. Furthermore, the testbed node controllers 
have two of these drivers implemented, which enables it to act as a 
man-in-the-middle and examine or alter each message frame as it 
passes through the controller.

Sensor Simulator Implementation
Following the successes in using an Arduino based system in [14], 
the authors designed a universal sensor simulator module that can 
emulate many different sensors that an ECU is looking for. A simple 
potentiometer and switch network can be built that can emulate many 
resistive based and voltage based sensors, as shown in Figure 5.

An example implementation uses a Microchip MCP41HV51 High 
Voltage Digital Potentiometer [15] . This device has internal switches 
to function as SW2-SW5 in Figure 5. The switch at the top of Figure 
5 provides a connection to the positive voltage. If a high voltage 
tolerant switch, like the Analog Devices ADG1401 [16], is used, then 
+12V can be used to generate voltages according to the taps on the 
digital potentiometer from 0 to +12V when SW1 is closed. If SW1, 
SW4, and SW5 are open, then an adjustable resistance can be 
simulated between Port 1 and Port 2. If SW1, SW2, and SW3 are 
open with SW4 and SW5 closed, then the Ports provide a resistance 
to ground, which can simulate temperature sensors and level sensors.

Figure 5. Potentiometer network to emulate many sensors.

Even a low-end microprocessor interfacing with the digital 
potentiometers and digital to analog converters (e.g. MCP4728) can 
receive commands over a USB to serial connection from the node 
controller and adjust settings. This functionality of the testbed gives 
the experimenter an opportunity to explore some scenarios involving 
cyber and physical aspects of these machines.

USER INTERACTION
One goal of the heavy vehicle testbed is to allow researchers to 
perform remote experiments and export the outcome data for 
analysis, without having to physically access a heavy vehicle. The 
testbed should have a full J1939 implementation so that all J1939 
network messages are available.

In addition, it should allow researchers to 

•	 Fully interact with the available ECUs 
•	 Input experimental or historical data to determine ECU responses 
•	 View the results rendered in real time using live-updating 

charts and tables that are parameterized according to the 
researcher’s standards 

•	 Inject their own J1939 messages onto the CAN network which 
may simulate attacks 

•	 Record any traffic generated by an experiment for analysis

The remote interface should provide an intuitive platform that is 
accessible even to those without a strong technical background. Since 
the testbed is based on J1939 standard, it can be expanded to function 
with any other hardware or simulation devices that utilizes the same 
standard. The interface also allows testbed administrators control 
over the node controllers. Thus, the remote interface is expandable to 
meet future growth and expansion.

Figure 6. Software Architecture of the Remote Interface to the Testbed

The testbed architecture shown in Figure 6 consists of five layers: the 
Web Interface, the Experiment Processing framework, the 
Experiment Logic framework, the CAN Data Processor, and the 
Database. The Web Interface frontend allows a client to login via a 
web browser where they are given options to create experiments, 
view their history, and make reservations. When creating an 
experiment, a user can select experiment parameters and the relevant 
display for the results. When the experiment is started, the setup 
parameters are passed to the Experiment Processing layer, which 
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periodically retrieves newly generated data and renders the results for 
display by the Web Interface. Experiment Processing allows novice 
users to understand CAN traffic by converting its messages into a 
human readable format with units and text descriptions. At the same 
time, advanced users have the ability to download the actual CAN 
messages for more in-depth analysis. Experiment Processing is also 
used for access to experiment history and the reservation system to 
access the testbed.

Figure 7. Sequence Diagram Illustrating the Processing Performed by the 
Remote Interface

The CAN Data Processor layer forms the backend. With the node 
controllers bridging the ECUs to the CAN network, the network can 
be logically segmented or combined in any arrangement desired by 
the user. The node controller allows a user to selectively forward and 
inject messages either into the backbone or the truck components on 
the testbed. The CAN Data Processor framework saves the traffic in 
the experiment database. This experiment data can be downloaded by 
the researcher at any time for offline use. To package the J1939 traffic 
for use by both the database and the web browser, the setup 
distributes the processing across the node controllers to increase 
concurrency and prevent overwhelming the server. As the Node 
Controllers send messages to the backend, it aggregates the messages 
and waits until the frontend calls for an update. Lastly, any injected 
messages are handled by the CAN Data Processor just like the rest of 
the J1939 messages.

The sequence diagram in Figure 7 depicts the flow of functionality of 
the remote interface. Upon logging in, the user’s credentials are sent 
through Django’s user authentication. Once authorized, the user can 
navigate to the “Experiment” tab and create an experiment to run 
during their reserved time. Creating an experiment involves selecting 
the desired hardware (e.g. ECU or Brake Controller), filters (e.g. 
number of data points or smooth curve), graphs (e.g. Speed vs. Time) 
and experiment duration. This is accomplished by creating a thread 
that passes from the Web Interface through the layered architecture to 

the CAN Data Processor, which translates the node controller’s data. 
This thread is what allows the user’s experiment settings and graph 
data to be passed to the node controllers found in the testbed. Once 
the node controllers receive their instructions, they respond by 
sending J1939 data using the data processing thread. Once processed, 
the data is converted to JSON so the information can be represented 
graphically on the researcher’s display. The experiment duration 
specified by the user determines how long the browser requests 
information from the node controllers. Throughout the experiment, 
the researcher has the liberty to inject their own traffic into the 
experiment. This traffic is sent to the data processor and to the node 
controllers. Eventually the injected traffic arrives at the desired ECUs 
and their responses follow the path back to the browser according to 
the standard J1939 protocol. When the experiment completes, a 
signal is passed to the node controllers, which causes the data 
processor thread to terminate and the experiment to be saved one final 
time. This flow of functionality allows the user to witness the direct 
results of injecting their traffic into a running simulation and 
promotes efficient and secure means of sending experiment data 
through the network.

Figure 8. The Select Hardware Interface

Figure 8 shows a sample of how the user selects the available 
hardware in the testbed to work with. Figure 9 shows how the user 
can add charts to display the data. One design challenge for the 
remote interface is determining the best way to present the data 
generated by experiments by updating charts and tables in real time. 
A JavaScript library called Chart.js handles data rendering for graphs. 
The charts can display any SPN that has a numerical value.

Another type of display that can be added is a data table, as shown 
in Figure 10. Tables are also updated in real-time and can display 
any PGN.

After the user adds the desired charts and tables, empty displays are 
shown on the experiment page awaiting experimental data. Once the 
experiment is started, data will begin to populate the specified charts 
and tables. Figure 11 shows the entire interface with a table and a 
graph being populated by the experiment.
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Figure 9. Adding a Chart Display

Figure 10. Adding a Table

Figure 11. Populating a Data Table and a Graph

TESTBED EXPERIMENTS
To demonstrate the utility of the testbed, sample experiments are 
described with some results in this section.

Seed/Key Exchange Experiment
When an ECM is communicating with diagnostic software, there may 
be routines that escalate privilege. As such, an ECM may request a 
key from the diagnostic software. To standardize this transaction, 
ISO15765 describes a security setup session. When the diagnostic 
software begins a security transaction, it requests a seed from the 
ECM. The ECM will respond with a seed value of 16 bits. The 
diagnostic software performs some math on the seed and transmits a 
key to the ECM. If the key from the diagnostic software matches the 
key that the ECM was anticipating, then the ECM will proceed as if it 
has been authenticated.

Of interest is the feasibility of cracking the seed/key exchange using 
a brute/force attack. With only 16 bits for a key, there are 65536 
combinations. The secret of the key is coded within the diagnostics 
software. Therefore, a PC with the diagnostics software is connected 
to the testbed through an RP1210 adapter. At the start of the seed key 
exchange, the message traffic as observed on the J1939 bus is shown 
in Table 1.

To harvest valid keys, the node controller connected to the ECU 
would emulate the ECU’s response to the PC’s request for a seed. A 
loop was constructed to give the PC every seed from 1 to 65536 and 
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record the key that is sent by the PC. In this fashion, all seed key 
pairs were obtained. The results, shown purposely with less detail, 
appear in Figure 12.

Table 1. Example of a Seed/Key using the testbed.

The PC software was programmed to run in an infinite loop that has 
an exit criterion of the ECM acknowledging the exchange. As such, 
there was no effort needed to manipulate the PC software; all data 
was obtained by simply asking for it over and over again. Each seed 
- key pair took 11 seconds to obtain, which is about 200 hours total. 
Once finished, the seed/key pairing turns into a 192kbyte lookup 
table. No knowledge of the algorithm is needed.

If the security seed and key space were expanded to fill the remaining 
4 bytes of the CAN frame, there would be 48 bits to work with. This 
creates a space that has 2.81475E+14 pairs, which at 11 seconds per 
pair would take 98,180,642 years.

Figure 12. Result of querying the PC diagnostic software for seed/key pairs.

Intrusion Detection
Liao et al. [17] classify intrusion detection systems into three broad 
categories: signature-based, anomaly-based, and stateful protocol 
analysis. Signature-based systems look deep into the traffic like data 
to find patterns which match intrusion patterns. Anomaly-based 
systems match statistics and other information about network traffic 
to identify behavior which differs from normal flow. Stateful protocol 
analysis compares state transitions of regular protocol to that of 
intrusions; thus, some may argue that this falls under the broad 
spectrum of anomaly detection.

The following techniques are typically used for intrusion detection 
systems: statistics-based, pattern-based, rule-based, state-based, and 
heuristic-based. Statistics-based approaches identify intrusions based 
on probabilities and statistics and compares them to predefined 
thresholds. Pattern-based approaches match known attack patterns to 
incoming network flow patterns. Rule-based approaches validate 
incoming traffic against rules to detect intrusion. State-based 
approaches define finite state machines for modeling correct behavior 
and validate incoming traffic against probable state transitions. 
Heuristics-based approaches make use of heuristics to identify 
malicious traffic.

In the following, we enumerate some challenges specific to the CAN 
network which makes it hard to adapt the existing work on IDS. IDS 
must operate in real-time - the delay between the occurrence of the 
attack and its detection must be minimized. It should also be 
automated to the extent possible and require minimum human 
intervention. IDS must be placed such that the normal message 
control flow should not be disrupted. IDS may have to operate in 
resource constrained devices and perhaps use real-time training data. 
IDS must be upgradable as new attacks are discovered.

We first investigate what types of IDSs are suitable for heavy 
vehicles. Signature-based IDS require a pattern matching based on 
known attacks. Since attacks on heavy vehicles are relatively 
infrequent compared with the Internet, we may not have sufficient 
data to develop patterns of attack. Anomaly-based and stateful 
approaches are more likely to work. However, such techniques are 
resource consuming and so must be adapted to work for low powered 
embedded CAN controllers. CAN is a broadcast protocol and also 
there are a large number of variations which make it harder to model 
normal behavior. False positive rate is typically high in anomaly 
detection network. However, a high false positive rate may be fatal 
for heavy trucks. In spite of these challenges, researchers tend to use 
anomaly-based and stateful approaches because of the lack of 
availability of CAN/J1939 based attack signatures.

Figure 13. Remote intrusion detection system
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Location of the IDS is also an important issue. In IP networks, IDS 
can be deployed in the host, network, or can be distributed over the 
host and network. In the context of CAN, the location of the IDS may 
give rise to a set of architectures which we plan to explore in our 
testbed and identify their merits and demerits. Host-based IDSs may 
not work well because the ECUs may lack the resources needed to do 
the complex computations. In addition, the ECUs must be modified to 
incorporate the new IDS. Moreover, IDSs are subject to change and 
such evolution is complex if their behavior is intertwined with the 
ECU functionality. Introducing a new embedded device that hosts the 
IDS is another alternative. However, this requires the heavy vehicles 
manufacturer to modify the bus architecture. A third alternative is to 
use a remote IDS which is a high-powered computationally intensive 
processor external to the CAN bus which performs the functionality 
of the IDS and sends alerts to the driver.

Such a remote IDS architecture is shown in Figure 13. The 
architecture consists of the following components.

User Interface
The user can choose the data sources (remote testbed or local 
sources), the plug-ins options, the number of records to process at a 
go, sleep time between processing data packets, and the PGNs and 
SPNs which will be analyzed.

Client
The client is responsible for reading data from a local file or remote 
connection. Remote data is read securely using an SSH tunnel, which 
forwards data from the remote testbed to a local server.

Decoders
The set of decoders for the PGNs and SPNs which helps in decoding 
the J1939 messages in real-time for analysis by the user.

Plug-Ins
A set of user developed plug-ins which can receive decoded SAE 
J1939 messages and use them to perform various tasks. For example, 
we can have a plug-in that compares related data generated by two 
ECUs to detect anomalies. We can have a plug-in that computes the 
slope of the data over time and detects abnormal behavior.

Plotter
A single instance of a plotter which can plot various user data as 
supplied to it by the plug-ins.

The IDS framework introduced in this paper adopts the train-classify-
report-research approach as established by Cain et al. [19]. However, 
instead of using archived and processed training data, we opt for 
time-series data, as accumulated during the most recent runtime 
phases of the vehicle (from when the vehicle started). This allows us 
to mitigate the effect of two critical extraneous factors namely, 
environmental influences like road and weather conditions and 
proprietary characteristics of vehicles. The assumption behind this 
approach is that the vehicle will be in a stable state at the time of 

start. If at all unstable at that time, in-vehicle mechanisms are 
expected to detect those anomalies. The IDS will train on the 
streaming data as received over time and attempt to classify two 
broad categories of anomalies: data flow based anomalies and traffic 
statistics based anomalies. Data flow based anomalies refer to 
abnormal changes in data received from different ECUs, whereas 
traffic statistics based anomalies refer to abnormal traffic features like 
volume of traffic and abnormal protocol state changes.

We identified 3 features, namely, abnormal rate of change of data 
values, variant information received from different ECUs about the 
same PGN-SPN pair, and abnormal message sequences.

The first of these features make use of the slope on streaming CAN 
data. One of the plugins which receives the raw PGN-SPN data along 
with the timestamps, calculate the slope as shown in Eq. 1.

(1)

The second feature compares raw data from two ECUs. In this case, 
we can use a plugin which takes raw data from the two inputs and 
performs a non-parametric statistical significance test on a moving 
window of certain width, to determine whether the two datasets 
received from the two ECUs are different.

Intrusion Detection Preliminary Experimental Results
In this section we will specify three features we identified we used to 
detect subtle anomalies in J1939 networks.

	
a. Normal Wheel Speed Data Time-Series Profile	 b. Normal Wheel Speed Slope Time-Series Profile

	
c. Abnormal Wheel Speed Data Time-Series Profile 	 d. Abnormal Wheel Speed Slope Time-Series Profile

Figure 14. Data flow based anomaly: Abnormal Rate of Change of Wheel 
Speed Data (PGN: 65215, SPN: 904) (x-axis: absolute timestamp, y-axis: 
speed/slope)
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a. Normal Wheel Speed Slope Time-Series Profile	 b. Normal Cruise/Vehicle Speed Slope Time-Series Profile

c. Abnormal Cruise/Vehicle Speed Slope Time-Series Profile

Figure 15. Data flow based anomaly: Abnormal Difference in Similar 
Information from Wheel Speed Data (PGN: 65215, SPN: 904) and Cruise/
Vehicle Speed Data (PGN: 65265, SPN: 84) (x-axis: absolute timestamp, 
y-axis: speed/slope)

Data Flow-based features
Experiments are performed on the Paccar PX-8 Engine data as 
obtained from a network recording of a Peterbilt service truck with a 
Paccar PX-8 engine.

Abnormal Rate of Change of Data
Figure 14a depicts the normal engine speed behavior of Paccar PX-8 
Engine data. This data shows an increase and then starts decreasing 
after reaching a peak value. Training an anomaly classifier on this 
data may be hard since it is ever changing and does not abide by any 
static parameter which can be used to model this information. 
However, a better perspective can be obtained from Figure 14b, 
where we plot the rate of change of engine-speed instead of the 
absolute data values. An interesting feature is that the positive edges 
on the y-axis have almost the same magnitude. This may be a 
potential predictor of anomalies as shown in Figure 14c and Figure 
14d, where we manually compromised the integrity of one PGN 
65215 message, and obtained the corresponding slopes. The slope in 
Figure 14d shows considerable change in positive y-axis peak.

The challenge is to find an efficient approach to predict this anomaly 
in such time series data and this approach can be applied on other 
SPNs. Moreover, since some SPNs generate categorical resolutions, 
calculation of slope poses its own challenges.

Abnormal Difference in Similar Information
Given SAE standards, multiple ECUs can provide the same or related 
information. For example, Wheel Speed Information (PGN: 65125), 
Front Axle Speed (SPN: 904) and Vehicle Speed 1 (PGN: 65265), 
Wheel-based Vehicle Speed (SPN: 84) provide almost similar 
information. This can be seen in Figure 15a and Figure 15b. We 
performed a non-parametric statistical significance test (Mann-

Whitney-Wilcoxon Test) and the two slope datasets did not show 
significant difference (p-value = 1.17) at .05 confidence level. 
However, once we modified the data in Figure 15c, the same test 
revealed a p-value of 0.04, showing significant difference at 0.05 
confidence level. Thus anomalies may be observed by detecting 
significant differences between data received from two separate 
ECUs producing similar information.

However, a lot of research needs to be done. First, we still need to 
perform this in real time and this requires identifying a suitable time 
window over which we can measure these differences. Second, we 
need to fix a correct sample size over which the statistical 
significance tests need to be performed. This may increase the 
number of false positives if the sample size or the window size is 
chosen incorrectly.

Traffic Statistics-based features
Multiple traffic statistics-based profiles can be created from CAN 
messages. However, this should not be much different from 
previously proposed research. Profiling the normal behavior of the 
trucker needs to done in terms of the traffic statistics (such as, 
volume) and patterns (such as, message timing correlations with 
respect to J1939 protocol flow).

Evaluation
In future, we plan to investigate whether real-time constraints can be 
satisfied by our IDS mechanism. Otherwise, we need to perform 
domain specific sampling. Our future work will investigate the 
usefulness of the various sampling techniques for real-time IDS.

We also need to evaluate our IDS against the standard metrics proposed 
by Tavallaaee et al. [18] for IP networks. This includes detection rates 
(fraction of alerts compared to the number of intrusions), false positive 
rates, accuracy, precision, detection and response times, and cost. In 
addition to these metrics, the resources consumed by the security 
mechanisms and timeliness measures will play a key role. If the 
resource consumption, response times, or costs are high, then the IDS 
must operate on sampled data. Here again, we need to define how to 
perform sampling so that accurate results are obtained.

Our eventual goal is to provide a repository of IDSs for J1939 traffic 
and provide a database of types of attacks detected, and requirements 
needed to deploy the specific IDS, and how they perform under the 
given metrics.

SUMMARY/CONCLUSIONS
According to the American Trucking Association (ATA), nearly 70% 
of America’s freighted goods are transported by heavy trucks, which 
represents more than 9.2 billion tons of freight. America thrives 
because of the trucking industry. Research in cyber security for heavy 
vehicles is a means to improving and safeguarding this industry. The 
remote testbed can be used to aid in the process of improving security 
standards for heavy trucks as well as in discovery of potential 
vulnerabilities. This allows researchers to be more productive, 
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achieve results faster, and explore additional experimental 
possibilities that may not have been feasible when tethered to a 
physical truck.
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DEFINITIONS/ABBREVIATIONS
CAN - Controller Area Network

GPIO - General Purpose Input Output

IDS - Intrusion Detection System

PGN - Parameter Group Number (from J1939)

PRU - Programmable Realtime Unit

SoC - System on a Chip

SPN - Suspect Parameter Number (from J1939)

UART - Universal Asynchronous Receiver/Transmitter
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