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Abstract

Enterprises use data warehouses to accumulate data from multiple sources for data
analysis and research. Since organizational decisions are often made based on the data
stored in a data warehouse, all its components must be rigorously tested. Researchers
have proposed a number of approaches and tools to test and evaluate different
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components of data warehouse systems. In this chapter, we present a comprehensive
survey of data warehouse testing techniques. We define a classification framework that
can categorize the existing testing approaches. We also discuss open problems and pro-
pose research directions.

1. INTRODUCTION

A data warehouse system gathers heterogeneous data from several

sources and integrates them into a single data store [1]. Data warehouses

are used for reporting and data analysis and form the core component of

business intelligence (BI) [2]. The goal of data warehouses is to help

researchers and data analyzers perform faster analysis and make better deci-

sions [3]. Data warehousing also makes it possible to do data mining, which

is the science of discovering patterns in the data for further decision-making,

such as predictions or classifications [4]. Data warehouses often use large-

scale (petabyte) data stores to keep archival as well as current data to enable

data analyzers to find precise patterns based on long-term changes in

the data.

Data warehouses are used in many application domains. A health data

warehouse brings electronic health records from many hospitals into a single

destination to help medical research on disease, drugs, and treatments.While

each hospital focuses on transactions for current patients, the health data

warehouse maintains historical data from multiple hospitals. This history

often includes old patient records. The past records along with the new

updates help medical researchers perform long-term data analysis.

A weather data warehouse gathers observations from stations all around

the world into a single data store to enable weather forecasting and climate

change detection.

There are many components and processes involved in data war-

ehousing. Fig. 1 shows the different components of a data warehouse system

including (1) sources, (2) extract, transform, and load (ETL) process, (3) data

warehouse, and (4) front-end applications.

The sources of a data warehousing system are data stores that provide data

from various places. These sources store the data of entities belonging to one

or more organizations. For example, the sources of a health data warehouse

are obtained from multiple hospitals that are collaborating for medical

research. There are different models, such as relational [5] or nonrelational

[6] models, and technologies, such as database management systems
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(DBMSs) or extensible markup language (XML) or comma separated values

(CSV) flat files that form the sources of data warehousing systems.

The ETL process selects data from the sources, resolves problems in the

data, converts it into a common model appropriate for research and analysis,

and writes it to the target data warehouse [1]. Among the four components

presented in Fig. 1, the design and implementation of the ETL process

require the largest effort in its development life cycle [3]. The ETL process

presents many challenges, such as extracting data from multiple heteroge-

neous sources involving different models, detecting and fixing different

types of errors in the data, and transforming the data into different formats

that match the requirements of the target data warehouse.

The data warehouse keeps data gathered and integrated from different

sources and stores a large number of records needed for long-term analysis.

Implementations of data warehouses use various data models, such as dimen-

sional or normalized models, and technologies, such as DBMS, data warehouse

appliance (DWA), and cloud data warehouse appliance.

The front-end applications are in the form of desktop, web, and mobile

applications that present business data with analysis to end users [3]. They

include analysis and decision support tools and online analytical processing

(OLAP) report generators. These applications make it easy for end users to

construct complex queries to request information from data warehouses

without requiring sophisticated programming skills.

Research is conducted and organizational decisions are made based on

the data stored in a data warehouse [7]. For example, based on our health

Fig. 1 Components of a data warehousing system.
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data warehouse, many critical studies such as the impacts of a specific med-

ication on people from different groups are performed using patient, treat-

ment, and medication data stored in the data warehouse. Thus, all the

components of a data warehouse must be thoroughly tested using rigorous

testing techniques. Although data warehouse design and implementation

have received considerable attention in the literature, few systematic tech-

niques have been developed for data warehouse testing [8].

There are a number of challenges in testing data warehouse systems:

• Heterogeneous sources and voluminous data involved in data war-

ehousing make data warehouse testing harder than testing traditional

software systems [7]. A comprehensive testing approach should take into

account all possible sources and test inputs for adequate testing.

• Due to the confidentiality of data in the sources of data warehousing sys-

tems, testers typically do not have access to the real data. As a result, there

is a requirement to create fake data with the relevant characteristics of

real data that enables adequate testing.

• Most data warehouse testing approaches are created for a specific context

and cannot be used for testing other data warehouse systems. This prob-

lem arises because testing approaches are typically designed based on

business domain requirements and the data warehouse architecture.

These testing approaches cannot be generalized and reused in projects

with different domain requirements [9] and architectures.

• Data warehouse testing requirements are not formally specified, which

makes them hard to verify. The tester needs to bridge the gap between

the informal specifications and the formality required for verification and

validation techniques [10].

ElGamal [9] presented several data warehouse testing approaches, and eval-

uated and compared them to highlight their limitations. The survey reported

the comparison based on what (referring to the testing type), where (implying

the data warehousing stage where the testing is applied), and when (stating

whether the test takes place before or after data warehouse delivery) in a

three-dimensional matrix. In this matrix, the rows represent the where-

dimension that takes four values, namely, sources to data store, data store to data

warehouse, data warehouse to data mart (a subset of data warehouse), and data

mart to front-end applications. The columns of the matrix represent the

what-dimension that takes three values, namely, schema related tests, data

related tests, and operational related tests. The third dimension of the matrix

is the when-dimension that takes two values, namely, before system delivery

and after system delivery. The survey compared 10 data warehouse testing
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approaches and concluded that none of them addressed all the what, where,

and when categories, and there are some test types that are not addressed by

any of these approaches. In the matrix, the component being tested and the

testing type are often described together which makes it hard to understand

the comparison matrix. For example, the entries data model and requirement

testing both fall under the what dimension of the matrix, which results in

ambiguities in the interpretation of the matrix.

Gao et al. [11] compared contemporary data warehouse testing tools for

data validation in terms of their operating environment, supported data

sources, data validation checks, and applied case studies. This survey com-

pared commercial and open-source approaches that test the quality of the

underlying data in the target data warehouse but did not consider approaches

for testing the other data warehouse components that are shown in Fig. 1.

In this chapter, we present a comprehensive survey of existing testing and

evaluation activities applied to the different components of data warehouses

and discuss the specific challenges and open problems for each component.

These approaches include both dynamic analysis as well as static evaluation

and manual inspections. We provide a classification framework based on

what is tested in terms of the data warehouse component to be verified,

and how it is tested through categorizing the different testing and evaluation

approaches. The survey is based on our direct experience with a health data

warehouse, as well as from existing commercial and research efforts in devel-

oping data warehouse testing approaches. The rest of the chapter is orga-

nized as follows. Section 2 describes the components of a data warehouse.

Section 3 presents a classification framework for testing data warehouse

components. Sections 4–6 discuss existing approaches and their limitations

for each testing activity. Finally, Section 7 concludes the chapter and out-

lines directions for future work.

2. DATA WAREHOUSE COMPONENTS

In this section, we describe the four components of a data war-

ehousing system, which are (1) sources, (2) target data warehouse, (3)

ETL process, and (4) front-end applications. We use the health data ware-

house as a running example.

2.1 Sources and Target Data Warehouse
Sources in a data warehousing system store data belonging to one or more

organizations for daily transactions or business purposes. The target data
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warehouse, on the other hand, stores large volumes of data for long-term

analysis and mining purposes. Sources and target data warehouses can be

designed and implemented using a variety of technologies including data

models and data management systems.

A data model describes business terms and their relationships, often in a

pictorial manner [12]. The following data models are typically used to design

the source and target schemas:

• Relational data model: Such a model organizes data as collections of two-

dimensional tables [5] with all the data represented in terms of tuples.

The tables are relations of rows and columns, with a unique key for each

row. Entity relationship (ER) diagrams [13] are generally used to design

the relational data models.

• Nonrelational data model: Such a model organizes data without a

structured mechanism to link data of different buckets (segments)

[6]. These models use means other than the tables used in relational

models. Instead, different data structures are used, such as graphs or

documents. These models are typically used to organize extremely

large datasets used for data mining because unlike the relational models,

the nonrelational models do not have complex dependencies between

their buckets.

• Dimensional data model: Such a model uses structures optimized for end-

user queries and data warehousing tools. These structures include fact

tables that keep measurements of a business process, and dimension tables

that contain descriptive attributes [14]. Unlike relational models that

minimize data redundancies and improve transaction processing, the

dimensional model is intended to support and optimize queries. The

dimensional models are more scalable than relational models because

they eliminate the complex dependencies that exist between relational

tables [15].

The dimensional model can be represented by star or snowflake

schemas [16] and is often used in designing data warehouses. These types

of schemas are as follows:

– Star: This type of schema has a fact table at the center. The table con-

tains the keys to dimension tables. Each dimension includes a set of

attributes and is represented via a one dimension table [17].

– Snowflake: Unlike the star schema, the snowflake schema has normal-

ized dimensions that are split into more than one dimension tables.

The star schema is a special case of the snowflake schema with a single

level hierarchy.
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The sources and data warehouses use various data management systems to

collect and organize their data. The following is a list of data management

systems generally used to implement the source and target data stores.

• Relational database management system (RDBMS): An RDBMS is based on

the relational data model that allows linking of information from differ-

ent tables. A table must contain what is called a key or index, and other

tables may refer to that key to create a link between their data [6].

RDBMSs typically use Structured Query Language (SQL) [18] and

are appropriate to manage structured data. RDBMSs are able to handle

queries and transactions that ensure efficient, correct, and robust data

processing even in the presence of failures.

• Nonrelational database management system: A nonrelational DBMS is based

on a nonrelational data model. The most popular nonrelational database

is Not Only SQL (NoSQL) [6], which has many forms, such as

document-based, graph-based, and object-based. A nonrelational DBMS

is typically used to store and manage large volumes of unstructured data.

• Big data management system: Management systems for big data need to

store and process large volumes of both structured and unstructured data.

They incorporate technologies that are suited to managing non-

transactional forms of data. A big data management system seamlessly

incorporates relational and nonrelational database management systems.

• Data warehouse appliance (DWA): DWA was first proposed by Hinshaw

[19] as an architecture suitable for data warehousing. DWAs are designed

for high-speed analysis of large volumes of data. A DWA integrates data-

base, server, storage, and analytics into an easy-to-manage system.

• Cloud data warehouse appliance: Cloud DWA is a data warehouse appliance

that runs on a cloud computing platform. This appliance benefits from

all the features provided by cloud computing, such as collecting and

organizing all the data online, obtaining infinite computing resources on

demand, and multiplexing workloads from different organizations [20].

Table 1 presents some of the available products used in managing the data in

the sources and target data warehouses. The design and implementation of

the databases in the sources are typically based on the organizational require-

ments, while those of the data warehouses are based on the requirements of

data analyzers and researchers.

For example, the sources for a health data warehouse are databases in hos-

pitals and clinic centers that keep patient, medication, and treatment infor-

mation in several formats. Fig. 2 shows an example of possible sources in the

health data warehouse. Hospital A uses a flat spreadsheet to keep records of
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patient data. Hospital B uses an RDBMS for its data. Hospital C also uses an

RDBMS but has a different schema than Hospital B. The data from different

hospitals must be converted to a common model in the data warehouse.

The target data warehouse for health data may need to conform to a stan-

dard data model designed for electronic health records such as Observational

Medical Outcomes Partnership (OMOP) Common Data Model (CDM)

[32]. The OMOP CDM is a dimensional model that includes all the obser-

vational health data elements that are required for analysis use cases. The

model supports the generation of reliable scientific evidence about disease,

medications, and health outcomes.

Table 1 Available Products for Managing Data in the Sources and Data Warehouses
Product Category Examples

DBMS Relational: MySQL [21], MS-SQL Server [22],

PostgreSQL [23]

Nonrelational: Accumulo [24], ArangoDB [25],

MongoDB [26]

Big data management

system

Apache Hadoop [27], Oracle [28]

Data warehouse

appliance

IBM PureData System [29]

Cloud data warehouse Google BigQuery [30], Amazon Redshift [31]

Fig. 2 Sample sources for a health data warehouse.
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2.2 Extract, Transform, and Load
The ETL process extracts data from sources, transforms it to a common

model, and loads it to the target data warehouse. Fig. 3 shows the compo-

nents involved in the ETL process, namely, extract, transform, and load.

1. Extract: This component retrieves data from heterogeneous sources that

have different formats and converts the source data into a single format

suitable for the transformation phase. Different procedural languages

such as Transact-SQL or COBOL are required to query the source data.

Most extraction approaches use Java Database Connectivity (JDBC) or

Open Database Connectivity (ODBC) drivers to connect to sources that

are in DBMS or flat file formats [33].

Data extraction is performed in two phases. Full extraction is per-

formed when the entire data is extracted for the first time. Incremental

extraction happens when new or modified data are retrieved from the

sources. Incremental extraction employs strategies such as log-based,

trigger-based, or timestamp-based techniques to detect the newly added

or modified data. In the log-based technique, the DBMS log files are

used to find the newly added or modified data in the source databases.

Trigger-based techniques create triggers on each source table to capture

changed data. A trigger automatically executes when data is created or

modified through a Data Manipulation Language (DML) event. Some

database management systems use timestamp columns to specify the time

and date that a given row was last modified. Using these columns, the

timestamp-based technique can easily identify the latest data.

Fig. 3 General framework for ETL processes.
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2. Transform: This component propagates data to an intermediate data stag-

ing area (DSA) where it is cleansed, reformatted, and integrated to suit

the format of the model of a target data warehouse [3]. This component

has two objectives.

First, the transformation process cleans the data by identifying and

fixing (or removing) the existing problems in the data and prepares

the data for integration. The goal is to prevent the transformation of

so-called dirty data [34, 35]. The data extracted from the sources is val-

idated both syntactically and semantically to ensure that it is correct based

on the source constraints. Data quality validation and data auditing

approaches can be utilized in this step to detect the problems in the data.

Data quality validation approaches apply quality rules to detect syntactic

and semantic violations in the data. Data auditing approaches use statis-

tical and database methods to detect anomalies and contradictions in the

data [36]. In Table 2 we present some examples of data quality validation

applied to data cleansing of patients in our health data warehouse.

Second, it makes the data conform to the target format through the

application of a set of transformation rules described in the source-to-

target mapping documents provided by the data warehouse designers

[33]. Table 3 presents examples of source-to-target mappings for gener-

ating a target table called Patient in our health data warehouse. The map-

pings include the names of the corresponding source and target tables,

the source and target columns with their types, and selection conditions.

3. Load: This component writes the extracted and transformed data from

the staging area to the target data warehouse [1]. The loading process

varies widely based on the organizational requirements. Some data ware-

houses may overwrite existing data with new data on a daily, weekly, or

Table 2 Examples of Validation Applied to Data Cleansing
Validation Example of a Violation

Incorrect value check Birth_date¼70045 is not a legal date format

Uniqueness violation check Same SSN¼‘123456789’ presented for two

people

Missing value check Gender is null for some records

Wrong reference check Referenced hospital¼1002 does not exist

Value dependency violation

check

Country¼‘Germany’ does not match zip

code¼‘77’
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Table 3 Transforming Source Data to Generate Target Table Patient
Source Target

Table Name
Column
Name

Data
Type Table Name

Column
Name

Data
Type Selection Condition

PersonDim PersonKey Integer Patient Patient_id Integer Transform all the current patients

PersonDim Name String Patient Patient_name String Transform all the patients

PersonDim,

AddressDim

AddressKey Integer Patient Location_id Integer Transform all the patients with new addresses

(after year 2000)

PersonDim,

Concept

Sex String Patient Gender Integer Transform all the patients with their sex using

concept values female, male, other



monthly basis, while other data warehouses may keep the history of data

by adding new data at regular intervals. The load component is often

implemented using loading jobs that fully or incrementally transform

data fromDSA to the data warehouse. The full load transforms the entire

data from the DSA, while the incremental load updates newly added or

modified data to the data warehouse based on logs, triggers, or

timestamps defined in the DSA.

The ETL components, namely, extract, transform, and load, are not inde-

pendent tasks, and they need to be executed in the correct sequence for any

given data. However, parallelization can be achieved if different compo-

nents execute on distinct blocks of data. For example, in the incremental

mode the different components can be executed simultaneously; the newly

added data can be extracted from the sources while the previously extracted

block of data is being transformed and loaded into the target data warehouse.

2.3 Front-End Applications
Front-end applications present the data to end users who perform analysis for

the purpose of reporting, discovering patterns, predicting, or making com-

plex decisions. These applications can be any of the following tools:

• OLAP report generators: These applications enable users and analysts to

extract and access a wide variety of views of data for multidimensional

analysis [37]. Unlike traditional relational reports that represent data in

two-dimensional row and column format, OLAP report generators rep-

resent their aggregated data in a multidimensional structure called cube

to facilitate the analysis of data from multiple perspectives [38]. OLAP

supports complicated queries involving facts to be measured across dif-

ferent dimensions. For example, as Fig. 4 shows, an OLAP report can

present a comparison of the number (fact) of cases reported for a disease

(dimension) over years (dimension), in the same region (dimension).

• Analysis and data mining: These applications discover patterns in large

datasets helping users and data analysts understand data to make better

decisions [4]. These tools use various algorithms and techniques, such

as classification and clustering, regression, neural networks, decision

trees, nearest neighbor, and evolutionary algorithms for knowledge dis-

covery from data warehouses. For example, clinical data mining tech-

niques [39] are aimed at discovering knowledge from health data to

extract valuable information, such as the probable causes of diseases,

nature of progression, and drug effects.
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• Decision support: These applications support the analysis involved in com-

plex decision-making and problem solving processes [40] that involve

sorting, ranking, or choosing from options. These tools typically use

Artificial Intelligence techniques, such as knowledge base or machine

learning to analyze the data. For example, a Clinical Decision Support

[41] application provides alerts and reminders, clinical guidelines, patient

data reports, and diagnostic support based on the clinical data.

3. TESTING DATA WAREHOUSE COMPONENTS

Systematic testing and evaluation techniques have been proposed by

researchers and practitioners to verify each of the four components of a data

warehouse to ensure that they perform as expected. We present a compre-

hensive survey by defining a classification framework for the testing and

evaluation techniques applied to each of the four components.

Fig. 5 shows the classification framework for the techniques applicable to

the sources, target data warehouse, ETL process, and front-end applications.

The framework presents what is tested in terms of data warehouse compo-

nents, and how they are tested. The following are the data warehouse com-

ponents presented in the framework:

Region

Disease Year

West
East

South
North

Heart diseases

Cancer

Hypertension 470

213

190

320

432

301

215

203

398

319

160

122

353

2017

2016

2015

2014

328

200

211

Diabetes

Fig. 4 OLAP cube example of the number of cases reported for diseases over time and
regions.
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• The sources and the target data warehouse store data. As a result, the same

types of testing and evaluation techniques apply to them. We consider

three different aspects to classify the approaches used to test these two

components; these are (1) testing the underlying data, (2) testing the data

model, and (3) testing the product used to manage the data.

• The ETL process requires the largest effort in the data warehouse devel-

opment life cycle [3]. As a result, most existing data warehouse testing

and evaluation approaches focus on this process. Various functional

and nonfunctional testing methods have been applied to test the ETL

process because it directly affects the quality of data inside the data war-

ehousing systems.

• The front-end applications in data warehousing systems provide an interface

for users to help them interact with the back-end data store.

Data warehouse testing

Testing
source area

Testing
underlying data

Testing
data model

Testing
data management

product

Functional
testing

Security
testing

Functional
testing

Functional
testing

Functional
testing

Performance
testing

Performance
testing

Performance
testing

Stress
testing

Stress
testing

Stress
testing

Scalability
testing

Reliability
testing

Regression
testing

Recovery
testing

Usability
evaluation

Usability
testing

Usability
testing

Structural
evaluation

Maintainability
evaluation

Testing
target data warehouse

Testing
extract, transform, load

Testing
front-end applications

Fig. 5 Classification framework for data warehouse testing.
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We categorize the existing testing and evaluation approaches as functional,

structural, usability, maintainability, security, performance and stress,

scalability, reliability, regression, and recovery testing. The shaded boxes

represent the categories not covered by the existing testing approaches

but that we feel are needed based on our experience with a real-world health

data warehouse project.

Other researchers have also defined frameworks for testing techniques

that are applicable to the different components of a data warehouse.

Golfarelli and Rizzi [8] proposed a framework to describe and test the com-

ponents in a data warehouse. They defined the data warehouse components

as schema, ETL, database, and front-end applications. However, the schema and

database are not exactly data warehouse components. Instead they are

features of the sources and the target data warehouses. The framework uses

seven different testing categories (functional, usability, performance, stress,

recovery, security, and regression) applicable to each of the data warehouse

components. Some nonfunctional testing techniques such as those for

assessing scalability, reliability, and maintainability are not included.

Mathen [1] surveyed the process of data warehouse testing considering

two testing aspects, which were (1) testing underlying data and (2) testing

the data warehouse components. The paper focused on two components

in the data warehouse architecture, i.e., the ETL process and the client

applications, and discussed testing strategies relevant to these components.

Performance, scalability, and regression testing categories were introduced.

Although testing the sources and the target data warehouse is critical to

ensuring the quality of the entire data warehouse system, they were ignored

in Mathen’s testing framework. Moreover, other functional and non-

functional aspects of testing data warehouse components, such as security,

usability, reliability, recovery, and maintainability testing, and existing

methods and tools for each testing type were not included.

In Sections 4–6, we describe the testing and evaluation activities neces-

sary for each component in detail and present the challenges and open

problems.

4. TESTING SOURCE AREA AND TARGET DATA
WAREHOUSE

In this section, we target the locations that store the data in a

data warehousing system, namely, the sources and the target data warehouse.

If problems exist in the sources, they should be resolved before the data is
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extracted and loaded into a target where fault localization is much more

expensive [7]. Fault localization is the process of finding the location of faults

in a software system. Due to the fact that there are many components and

processes involved in data warehousing systems, if the faulty data are prop-

agated to the target data warehouse, finding the location of the original fault

that caused subsequent error states will require a lot of effort. As a result,

testing the source area is critical to ensuring the quality of data being prop-

agated to the target data warehouse.

The quality of the target storage area is also important [42] because this is

the place where the data analyzers and researchers apply their queries either

directly or through the front-end applications. Any problem in the target

data warehouse results in incorrect information. Thus, testing must ensure

that the target meets the specifications and constraints defined for the data

warehouse.

We considered three different aspects to test the source area and the

target data warehouse. These are (1) testing the underlying data, (2) testing

the data model, and (3) testing the data management product.

4.1 Testing Underlying Data
In this testing activity, the data stored in the sources and the target data ware-

house is validated against organizational requirements, which are provided

by domain experts in the form of a set of rules and definitions for valid data.

If the underlying data fails to meet the requirements, any knowledge derived

from the data warehouse will be incorrect [43].

We describe existing functional and security testing approaches based on

testing the underlying data in data warehouses as well as propose approaches

based on our experience to achieve high quality data in a health data

warehouse.

4.1.1 Functional Testing of Underlying Data
Functional testing of the underlying data is a type of data quality testing that

validates the data based on quality rules extracted from business requirements

documents. The data quality test cases are defined as a set of queries that ver-

ify whether the data follows the syntactic and semantic rules. This testing

activity uses domain-specific rules, which are a set of business rules that

are internal to an organization.
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Examples of the data elements that are verified using data quality tests are

as follows:

• Data type: A data type is a classification of the data that defines the oper-

ations that can be performed on the data and the way the values of the

data can be stored [44]. The data type can be numeric, text, Boolean, or

date-time; these are defined in different ways in different languages.

• Data constraint: A constraint is a restriction that is placed on the data to

define the values the data can take. Primary key, foreign key, and

not-null constraints are typical examples.

Examples of semantic properties that we suggest are as follows:

• Data plausibility: A restriction that is placed on the data to limit the

possible values it can take. For example, a US zip code can only take five

digit values.

• Logical constraint: A restriction defined for the logical relations between data.

For example, the zip code¼33293 does not match the country¼Germany.

The data quality rules are not formally specified in the business requirements.

The tester needs to bridge the gap between informal specifications and formal

quality rules. Table 4 presents some examples of informally defined data qual-

ity rules for electronic health records [45]. Table 5 shows test cases defined as

queries to verify the data quality rules presented in Table 4. Assume that after

executing the test cases (queries), the test results are stored in a table called

tbl_test_results. In this table, each record describes the failed assertion. The

record includes the test_id that indicates the query number, status that takes

as values error and warning, and description that contains a brief message about

the failure. An empty table indicates that all the assertions passed.

Table 4 Data Quality Rules for Electronic Health Records
Field Data Quality Rule Property

1 Weight Should not be negative Semantic (data plausibility)

2 Weight Should be a numeric value Syntactic (data type)

3 Sex Should be male or female

or other

Semantic (data plausibility)

4 Sex Should not be null Syntactic (data constraint)

5 Start_date, End_date Start_date of patient visit

should be before End_date

Semantic (logical constraint)

6 Start_date, End_date Should be a date value Syntactic (data type)
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Data profiling [7] and data auditing [36] are statistical analysis tools that

verify the data quality properties to assess the data and detect business rule

violations, as well as anomalies and contradictions in the data. These tools

are often used for testing the quality of data at the sources with the goal

of rectifying data before it is loaded to the target data warehouse [33].

There exist data validation tools that perform data quality tests focusing

on the target data. Data warehouse projects are typically designed for

specific business domains and it is difficult to define a generalized data

quality assurance model applicable to all data warehouse systems. As a result,

the existing data quality testing tools are developed either for a specific

domain or for applying basic data quality checks that are applicable to all

domains. Other generalized tools let users define their desired data quality

rules.

Achilles [46] proposed by the OHDSI community [47] is an example

that generates specific data quality tests for the electronic health domain.

This tool defines 172 data quality rules and verifies them using queries as

test cases. The tool checks the data in health data warehouses to ensure

Table 5 Test Cases to Assess Electronic Health Records
Query

1 INSERT INTO tbl_test_results (test_id, status, description) values (SELECT 1

AS test_id, ‘error’ AS status, ‘weight is negative’ AS description FROM

tbl_patients WHERE weight<0)

2 INSERT INTO tbl_test_results (test_id, status, description) values (SELECT 2

AS test_id, ‘error’ AS status, ‘weight is nonnumeric’ AS description FROM

tbl_patients WHERE weight.type<>DOUBLE OR weight.

type<>INTEGER OR weight.type<>FLOAT)

3 INSERT INTO tbl_test_results (test_id, status, description) values (SELECT 3

AS test_id, ‘error’ AS status, ‘Sex is invalid’ AS description FROM tbl_patients

WHERE !(Sex¼‘Male’ OR Sex¼‘Female’ OR Sex¼‘Other’))

4 INSERT INTO tbl_test_results (test_id, status, description) values (SELECT 4

AS test_id, ‘error’ AS status, ‘Sex is null’ AS description FROM tbl_patients

WHERE Sex¼null)

5 INSERT INTO tbl_test_results (test_id, status, description) values (SELECT 5

AS test_id, ‘error’ AS status, ‘start date is greater than end date’ AS description

FROM tbl_patients WHERE Start_date>End_date)

6 INSERT INTO tbl_test_results (test_id, status, description) values (SELECT 6

AS test_id, ‘error’ AS status, ‘Invalid dates’ AS description FROM tbl_patients

WHERE Start_date.type<>Date OR End_date.type<>Date)
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consistency with the OMOP common data model. It also uses rules that

check the semantics of health data to be plausible based on its rule set.

Table 5 shows some examples.

Loshin [48] provided a data validation engine called GuardianIQ that

does not define specific data quality rules but allows users to define and

manage their own expectations as business rules for data quality at a high

level in an editor. As a result, this tool can be used in any data warehousing

project. The tool transforms declarative data quality rules into queries that

measures data quality conformance with their expectations. Each data is

tested against the query set and scored across multiple dimensions. The

scores are used for the measurement of levels of data quality, which calculates

to what extent the data matches the user’s expectations.

Informatica Powercenter Data Validation [49] is another example of a

tool that generates data quality tests and is generalized for use in any data

warehouse project. It allows users to develop their business rules rapidly

without having any knowledge of programming. The test cases, which

are a set of queries, are generated from the user’s business rules to be

executed against the data warehouse under test.

Gao et al. [11] compare the existing data quality validation tools for

general use in terms of the operation environment, supported DBMSs

or products, data validation checks, and case studies. All the tools discussed

in Gao et al.’s paper provide basic data quality validations, such as null

value, data constraint, and data type checks. However, they do not assure

the completeness of their data quality checks through well-defined test

adequacy criteria. In software testing, a test adequacy criterion is a predi-

cate that determines what properties of a software application must be

exercised to constitute a complete test. We can define the test adequacy

criteria for data quality tests as the number of columns, tables or constraints

exercised by the quality tests. The set of test cases (queries) must contain

tests to verify the properties of all the columns in all the tables of the sources

or the target data warehouse.

Furthermore, the fault finding ability of the data quality tests is not eval-

uated in any of the surveyed approaches. We suggest that new research

approaches be developed using mutation analysis techniques [50] to evaluate

the ability of data quality tests to detect possible faults in the data. In these

techniques, a number of faults are injected into the data to see how many of

the faults are detected by the tests. Table 6 shows a number of sample faults

to inject into the data to violate the data quality properties we defined in

this section.
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4.1.2 Security Testing of Underlying Data
Security testing of underlying data is the process of revealing possible flaws in

the security mechanisms that protect the data in a data storage area. The

security mechanisms must be built into the data warehousing systems.

Otherwise, if access control is only built into the front-end applications

but not into the data warehouse, a user may bypass access control by directly

using SQL queries or reporting tools on the data warehouse [51].

Every source database may have its access privileges defined for its data

based on organizational requirements. Data loaded to the target data ware-

house is supposed tomaintain the same security for the corresponding data in

the sources, while enforcing additional policies based on the data warehouse

requirements. For example, if the personal information of the patients in a

hospital is protected via specific techniques such as by defining user profiles

or database access control [8], the same protection must be applied for the

patient data transformed to the target health data warehouse. Additional

access polices may be defined on the target health data warehouse to authen-

ticate medical researchers who want to analyze the patient data.

Security testing of the underlying data in a data warehouse involves a

comparison of the access privileges defined for the target data with the ones

defined for the corresponding source data to determine whether all the

required protections are correctly observed in the data warehouse. For this

purpose, we can define security tests by formulating queries that return

defined permissions associated with the data in both the sources and the tar-

get data warehouse, and compare the permissions for equivalent data using

either manual or automatic techniques.

4.2 Testing the Data Model
As the data model is the foundation for any database, it is critical to get

the model right because a flawed model directly affects the quality of

Table 6 Sample Faults Injected into Health Data for Mutation Analysis
Property Fault Type

Data type Store a string value in a numeric field

Data constraint Copy a record to have duplicate values for a primary key field

Data plausibility Store a negative value in a weight field

Logical constraint Set a pregnancy status to true for a male patient
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information. Data model tests ensure that the design of the model follows

its standards both conceptually and logically and meets the organizational

specifications. Documentation for the source and target model help

equip testers with the required information for the systematic testing of

data models.

4.2.1 Functional Evaluation of the Data Model
In this evaluation activity, the quality of the data model design is verified to

be consistent with organizational requirements of the sources or the data

warehouse. Some of the approaches are general enough to assess any data

model (relational, nonrelational, or dimensional), while there exist other

approaches that evaluate a specific data model.

Hoberman [12] created a data model scorecard to determine the quality

of any data model design that can be applied to both the source area and the

target data warehouse. The scorecard is an inspection checklist that includes

a number of questions and the score for each question. The number in front

of each question represents the score of the question assigned by Hoberman.

The organization places a value between 0 and the corresponding score on

each question to determine to what extent the model meets the functional

requirements. The following is a description of each question related to the

functional evaluation of data models and the corresponding scores:

1. Does the model capture the requirements (15)? This ensures that the data

model represents the organizational requirements.

2. Is the model complete (15)? This ensures that both the data model and its

metadata (data model descriptive information) are complete with respect

to the requirements.

3. Does the model match its schema (10)? This ensures that the detail (con-

ceptual, logical, or physical) and the perspective (relational, dimensional,

or NoSQL) of the model matches its definition.

4. Is the model structurally correct (15)? This validates the design practices

(such as primary key constraints) employed for building the data model.

5. Are the definitions appropriate (10)? This ensures that the definitions in

the data model are correct, clear, and complete.

6. Is the model consistent with the enterprise (5)? This ensures that the set

of terminology and rules in data model context can be comprehended by

the organization.

7. Does the metadata match the data (10)? This ensures that the data

model’s description is consistent with the data model.
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Golfarelli and Rizzi [8] proposed three types of tests on the conceptual and

logical dimensional data model in a data warehouse:

• A fact test verifies whether or not the conceptual schema meets the pre-

liminary workload requirements. The preliminary workload is a set of

queries that business users intend to run against the target data ware-

house. These queries help the data warehouse designers identify required

facts, dimensions, and measurements in the dimensional data model [52].

For each workload, the fact test checks whether or not the required mea-

sures are included in the fact schema. This evaluation also measures the

number of nonsupported workloads.

• A conformity test assesses how well the conformed dimensions are

designed in a dimensional data model. Such a model includes fact tables

that keep metrics of a business process, and dimension tables that con-

tain descriptive attributes. A fact table contains the keys to the dimen-

sion tables. A conformed dimension is one that relates to more than one

fact. These dimensions support the ability to integrate data from mul-

tiple business processes. The conformity test is carried out by measuring

the sparseness of a bus matrix [53] that is a high-level abstraction of a

dimensional data model. In this matrix, columns are the dimension

tables, and rows are the fact tables (business processes). The matrix asso-

ciates each fact with its dimensions. If there is a column in the matrix

with more than one nonzero element, it shows the existence of a con-

formed dimension. If the bus matrix is dense (i.e., most of the elements

are nonzero), it shows that there are dimensions that are associated with

many facts, which indicates that the model includes overly generalized

columns. For example, a person column refers to a wide variety of peo-

ple, from employees to suppliers and customers while there is zero

overlap between these populations. In this case, it is preferable to have

a separate dimension for each population and associate them to the

corresponding fact. On the other hand, if the bus matrix is sparse

(i.e., most of the elements are zero), it shows that there is a few con-

formed dimension defined in the dimensional model, which indicates

that the model includes overly detail columns. For example, each

individual descriptive attribute is listed as a separate column. In this

case, it is preferable to create a conformed dimension that is shared

by multiple facts.

• A star test verifies whether or not a sample set of queries in the preliminary

workload can be correctly formulated in SQL using the logical datamodel.

The evaluation measures the number of nonsupported workloads.
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The above functional evaluation activities are manually performed via

inspections. There is a lack of automated techniques.

4.2.2 Structural Evaluation of the Data Model
This type of testing ensures that the data model is correctly implemented

using the database schema. The database schema is assessed for possible flaws.

MySQL schema validation plug-in performs general validation for relational

data models [54]. It evaluates the internal structure of the database schema

and performs the following checks:

1. Validate whether content that is not supposed to be empty is actually

empty. The tool reports an error if any of the following empty content

exists in the relational database schema:

• A table without columns

• A view without SQL code

• A table/view not being referenced by at least one role

• A user without privileges

• A table/object that does not appear in any ER diagrams

2. Validate whether a table is correctly defined by checking the primary key

and foreign key constraints in that table. The tool reports an error if any of

the following incorrect definition exists in the relational database schema:

• A table without primary key

• A foreign key with a reference to a column with a different type

3. Validate whether there are duplications in the relational database objects.

The tool reports an error if any of the following duplications exist in the

relational database schema:

• Duplications in object names

• Duplications in roles or user names

• Duplications in indexes

4. Validate whether there are inconsistencies in the column names and their

types. The tool reports an error if the following inconsistency exists in

the relational database schema:

• Using the same column name for columns of different data types

The above approach targets the structural validation of the relational data

schema but it does not apply to nonrelational and other data schema.

To assess the coverage of validation, we suggest using various structural

metrics. These metrics are predicates that determine what properties of a

schema must be exercised to constitute a thorough evaluation. The metrics

are the number of views, routines, tables, columns, and structural constraints

that are validated during the structural evaluations.
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4.2.3 Usability Evaluation of the Data Model
Usability evaluation of a data model tests whether the data model is easy to

read, understand, and use by the database and data warehouse designers.

A data model is usually designed in a way to cover the requirements of data-

base and data warehouse designers. There are many common data models

designed for specific domains, such as health, banking, or business. The

Hoberman scorecard [12] discussed in the functional evaluation of the data

model also includes a number of questions and their scores for usability eval-

uation of any data model. The data warehouse designer places a value

between 0 and the corresponding score on each question to determine to

what extent the model meets the usability requirements. The following is

a description of each question related to the usability evaluation of data

models and the corresponding scores:

1. Does the model use generic structures, such as data element, entity, and

relationship (10)? This ensures that the data model uses appropriate

abstractions to be transferable to more generic domains. For example,

instead of using phone number, fax number, or mobile number ele-

ments, an abstract structure contains phone and phone type which

accommodates all situations.

2. Does the model meet naming standards (5)? This ensures that the terms

and naming conventions used in the model follow the naming standards

for data models. For example, inconsistent use of uppercase letter, low-

ercase letter, and underscore, such as in Last Name, FIRST NAME, and

middle_name, indicates that naming standards are not being followed.

3. Is the model readable (5)? This ensures that the data model is easy to read

and understand. For example, it is more readable to group the data ele-

ments that are conceptually related into one structure instead of scatter-

ing the elements over unrelated structures. For example, city, state, and

postal code are grouped together.

The above approach involves human inspection, and there does not exist

automated techniques for the usability testing of relational, nonrelational,

and dimensional data models.

4.2.4 Maintainability Evaluation of the Data Model
Due to the evolving nature of data warehouse systems, it is important to use a

data model design that can be improved during the data warehouse lifecycle.

Maintainability assessments evaluate the quality of a source or target data

model with respect to its ability to support changes during an evolution pro-

cess [55].
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Calero et al. [56] listed metrics for measuring the complexity of a data

warehouse star design that can be used to determine the level of effort

required to maintain it. The defined complexity metrics are for the table,

star, and schema levels. The higher the values, the more complex is the

design of the star model, and the harder it is to maintain the model. The

metrics are as follows:

• Table metrics

– Number of attributes of a table

– Number of foreign keys of a table

• Star metrics

– Number of dimension tables of a star schema

– Number of tables of a star schema that correspond to the number of

dimension tables added to the fact table

– Number of attributes of dimension tables of a star schema

– Number of attributes plus the number of foreign keys of a fact table

• Schema metrics

– Number of fact tables of the star schema

– Number of dimension tables of the star schema

– Number of shared dimension tables that is the number of dimension

tables shared for more than one star of the schema

– Number of the fact tables plus the number of dimension tables of the

star schema

– Number of attributes of fact tables of the star schema

– Number of attributes of dimension tables of the star schema

These metrics give an insight into the design complexity of the star data

model, but there is no information in the Calero et al. paper on how to relate

maintainability tests to these metrics. There is also a lack of work in devel-

oping metrics for other data models such as the snowflake model or rela-

tional data models.

4.3 Testing Data Management Product
Using the right product for data management is critical to the success of data

warehouse systems. There are many categories of products used in data war-

ehousing, such as DBMSs, big data management systems, data warehouse

appliances, and cloud data warehouses that should be tested to ensure that

it is the right technology for the organization. In the following sections,

we describe the existing approaches for performance, stress, and recovery

testing of the data management products.
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4.3.1 Performance and Stress Testing of Data Management Product
Performance testing determines how a product performs in terms of respon-

siveness under a typical workload [57]. The performance of a product is typ-

ically measured in terms of response time. This testing activity evaluates

whether or not a product meets the efficiency specifications claimed by

the organizations.

Stress testing evaluates the responsiveness of a data management product

using an extraordinarily large volume of data bymeasuring the response time

of the product. The goal is to assess whether or not the product performs

without failures when dealing with a database with a size significantly larger

than expected [8].

Due to the fact that the demand for real-time data warehouses [3] and

real-time analysis is increasing, performance and stress testing play a major

role in data warehousing systems. Due to the growing nature of data war-

ehousing systems, the data management product tolerance must be evaluated

using unexpectedly large volumes of data. The product tolerance is the max-

imum volume of data the product can manage without failures and crashes.

Comparing efficiency and tolerance characteristics of several data manage-

ment products help data warehouse designers choose the appropriate tech-

nology for their requirements.

Performance tests are carried out on both real data or mock (fake) datasets

with a size comparable with the average expected data volume [8]. How-

ever, stress tests are carried out on mock databases with a size significantly

larger than the expected data volume. These testing activities are performed

by applying different types of requests on the real or mock datasets.

A number of queries are executed, and the responsiveness of the data man-

agement product is measured using standard database metrics. An important

metric is the maximum query response time because query execution plays

an important role in data warehouse performance measures. Both simple and

multiple join queries are executed to validate the performance of queries on

databases with different data volumes. Business users develop sample queries

for performance testing with specified acceptable response times for each

query [1].

Slutz [58] developed an automatic tool called Random Generation of

SQL (RAGS) that stochastically generates a large number of SQL Data

Manipulation Language (DML) queries that can be used to measure how

efficiently a data management system responds to those queries. RAGS gen-

erates the SQL queries by parsing a stochastic tree and printing the query

out. The parser stochastically generates the tree as it traverses the tree using
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database information (table names, column names, and column types).

RAGS generates 833 SQL queries per second that are useful for performance

and stress testing purposes.

Most performance and stress testing approaches in the literature focus on

DBMSs [59], but there is a lack of work in performance testing of data ware-

house appliances or cloud data warehouses.

4.3.2 Recovery Testing of Data Management Product
This testing activity verifies the degree to which a data management product

recovers after critical events, such as power disconnection during an update,

network fault, or hard disk failures [8].

As data management products are the key components of any data ware-

house systems, they need to recover from abnormal terminations to ensure

that they present correct data and that there are no data loss or duplications.

Gunawi et al. [60] proposed a testing framework to test the recovery of

cloud-based data storage systems. The framework systematically pushes

cloud storage systems into 40,000 unique failures instead of randomly push-

ing systems into multiple failures. They also extended the framework to

evaluate the expected recovery behavior of cloud storage systems. They

developed a logic language to help developers precisely specify recovery

behavior.

Most data warehousing systems that use DBMSs or other transaction sys-

tems rely on the atomicity, consistency, isolation, and durability (ACID)

properties [61] of database transactions to meet reliability requirements.

Database transactions allow correct recovery from failures and keep a data-

base consistent even after abnormal termination. Smith and Klingman [62]

proposed a method for recovery testing of transaction systems that use ACID

properties. Their method implements a recovery scenario to test the recov-

ery of databases affected by the scenario. The scenario uses a two-phase

transaction process that includes a number of service requests and is initiated

by a client application. The scenario returns to the client application without

completing the processing of transaction and verifies whether or not the

database has correctly recovered. The database status is compared to the

expected status identified by the scenario.

4.4 Summary
Table 7 summarizes the testing approaches that have been applied to the

sources and the target data warehouse that we discussed in this section.
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Table 7 Testing the Sources and the Target Data Warehouse

Test Category Component
GuardianIQ
[48]

Informatica
[49]

Hoberman
[12]

Golfarelli
and Rizzi
[8]

MySQL
plug-in
[54]

Calero
et. al,
[56]

Slutz
[58]

Gunawi
et al.
[60]

Smith and
Klingman
[62]

Gray shaded rows indicate that we did not find approaches or tools to support that kind of testing activity even though they are necessary for a real-world data-warehouse.



There are no methods proposed for the security testing of underlying data in

data warehouse systems (as indicated by the gray shaded row in the table).

We have identified the following open problems in testing the sources

and the target data warehouse.

• In the area of functional testing of underlying data, there is no systematic way

to assure the completeness of the test cases written/generated by different

data quality assurance tools. We suggest that new research approaches be

developed using a test adequacy criterion, such as number of fields,

tables, or constraints as properties that must be exercised to constitute

a thorough test.

• Data quality rules are not formally specified in the business requirements

for the functional testing of the underlying data. A tester needs to bridge the

gap between informal specifications and formal quality rules.

• It is difficult to design a generalized data quality test applicable to all data

warehouse systems because data warehouse projects are typically

designed for specific business domains. There are a number of general-

ized tools that let users define their desired data quality rules.

• The fault finding ability of the data quality tests are not evaluated in the

literature. One can use mutation analysis techniques to perform this

evaluation.

• No approach has been proposed for the security testing of underlying data.

One can compare the access privileges defined for the target data with

the ones defined for the corresponding source data to ensure that all

the required protections are correctly observed in the target data

warehouse.

• There is a lack of automatic functional evaluation techniques for data

models. The existing functional evaluation activities are manually per-

formed through human inspections.

• There is a lack of structural evaluation techniques for nonrelational and

dimensional schema. The existing approaches focus on the relational data

schema.

• No formal technique has been proposed for the usability testing of data

models. The proposed approaches are typically human inspections.

• In the area of maintainability testing of data models, a number of design

complexity metrics have been proposed to get an insight into the capa-

bility of the data model to sustain changes. However, there is no infor-

mation on how to design maintainability tests based on the metrics.

• The heterogeneous data involved in the data warehousing systems make

the performance and stress testing of data management products difficult. Testers
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must use large datasets in order to perform performance and stress tests.

Generating this voluminous data that reflect the real characteristics of the

data is an open problem in these testing activities.

• There is a lack of work in performance and stress testing of data warehouse

appliance and cloud data warehouses. The proposed approaches in the liter-

ature typically focus on testing DBMSs.

5. TESTING ETL PROCESS

This testing activity verifies whether or not the ETL process extracts

data from sources, transforms it into an appropriate form, and loads it to a

target data warehouse in a correct and efficient way. As the ETL process

directly affects the quality of data transformed to a data warehouse [9], it

has been the main focus of most data warehouse testing techniques [3]. In

this section, we describe existing functional, performance, scalability, reli-

ability, regression, and usability testing approaches as well as propose a

new approach based on our experience in testing the ETL process in a health

data warehouse [63].

5.1 Functional Testing of ETL Process
Functional testing of ETL process ensures that any changes in the source sys-

tems are captured correctly and propagated completely into the target data

warehouse [3]. Two types of testing have been used for evaluating the func-

tionality of ETL process, namely, data quality and balancing tests.

5.1.1 Data Quality Tests
This testing activity verifies whether or not the data loaded into a data ware-

house through the ETL process is consistent with the target data model and

the organizational requirements. Data quality testing focuses on the quality

assessment of the data stored in a target data warehouse. Data quality tests are

defined based on a set of quality rules provided by domain experts. These

rules are based on both domain and target data model specifications to val-

idate the syntax and semantics of data stored in a data warehouse. For

example, in our health data warehouse project, we use data quality rules

from six clinical research networks, such as Achilles [46] and PEDSnet

[64] to write test cases as queries to test the data quality. Achilles and

PEDSnet define a number of rules to assess the quality of electronic health

records, and report errors and warnings based on the data. These quality

rules are defined and periodically updated in a manner to fit the use and
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need of the health data users. Achilles defines its data quality rules as SQL

queries while PEDSnet uses R. Table 8 shows examples of two data quality

rules that are validated in Achilles.

Note that the tools described in Section 4.1.1 to test the quality of the

underlying data in a data warehousing system can also be used to execute

data quality tests for the ETL process. The difference is that in the context

of ETL testing, the tools have a different purpose, which is to test any time

data is added or modified through the ETL process.

5.1.2 Balancing Tests
Balancing tests ensure that the data obtained from the source databases is not

lost or incorrectly modified by the ETL process. In this testing activity, data

in the source and target data warehouse are analyzed and differences are

reported.

The balancing approach called Sampling [65] uses source-to-target map-

ping documents to extract data from both the source and target tables and

store them in two spreadsheets. Then it uses the Stare and Compare technique

to manually verify data and determine differences through viewing or eye-

balling the data. Since this task can involve the comparison of billions of

records, most of the time, a few number of the entire set of records are ver-

ified through this approach.

IBM QuerySurge [65] is a commercial tool that was built specifically to

automate the balancing tests through query wizards. The tool implements a

method for fast comparison of validation query results written by testers [66].

The query wizards implement an interface to make sure that minimal effort

and no programming skills are required for developing balancing tests and

obtaining results. The tool compares data based on column, table, and record

count properties. Testers select the tables and columns to be compared in the

wizard. The problem with this tool is that it only compares data that is not

Table 8 Examples of Achilles Data Quality Rules
Rule_id Data Quality Rule Status Description

19 Year of birth should not be

prior to 1800

Warning Checks whether or not year

of birth is less than 1800

32 Percentage of patients with

no visits should not exceed

a threshold value

Notification Checks whether or not the

percentage of patients that

have no visit records is greater

than 5
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modified during the ETL transformation, which is claimed to be 80% of

data. However, the goal of ETL testing should also be to validate data that

has been reformatted and modified through the ETL process.

Another method is Minus Queries [65] in which the difference between

the source and target is determined by subtracting the target data from the

source data to show existence of unbalanced data. The problem with this

method is the potential for false positives. For example, as many data ware-

houses keep historical data, there may be duplicate records in the target data

warehouse corresponding to the same entity and the result might report an

error based on the differences in number of records in the source and the

target data warehouse. However, these duplications are actually allowed

in the target data warehouse.

We propose to identify discrepancies that may arise between the source

and the target data due to an incorrect transformation process. Based on

these discrepancies we define a set of properties, namely, completeness, con-

sistency, and syntactic validity.

Completeness ensures that all the relevant source records get transformed

to the target records. Consistency and syntactic validity ensure correctness of

the transformation of the attributes. Consistency ensures that the semantics

of the various attributes are preserved in the transformation process. Syntac-

tic validity ensures that no problems occur due to the differences in the syn-

tax between the source and the target data.

In our project, we generated balancing tests to compare the data in the

health data warehouse, which uses a dimensional database on Google

BigQuery, with the corresponding data in sources, which use dimensional

patient databases of two hospitals [63].

The source-to-target mappings available in the ETL transformation

specifications provide the necessary information to identify corresponding

tables and attributes in the sources and target data warehouse and assist in

developing an appropriate testing strategy [7]. The ETL transformations

include one-to-one, many-to-one, and many-to-many mappings. We used

the mapping documents from the health data warehouse to extract

corresponding source and target tables and attributes, both for modified

and nonmodified data. Then we generated a set of test assertions as queries

to compare the source and target data verifying the proposed properties.

The fault finding ability of the balancing tests are not evaluated in any of

the surveyed approaches. We proposed to use the mutation analysis tech-

nique [50] to evaluate the ability of our balancing tests in detecting possible
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faults in the data. Table 9 shows mutation operators we proposed to inject

faults into the data to assess the effectiveness of the balancing tests.

Due to the voluminous data involved in data warehousing, a compre-

hensive functional test of ETL must consider all possible inputs for an ade-

quate testing. However, there is a limitation in defining adequate test inputs

in the literature. As it is impossible to test the functionality of the ETL pro-

cess with all possible test inputs, one can use systematic input space par-

titioning [67] techniques to generate test data. Input space partitioning is

a software testing technique that groups the input data into partitions of

equivalent data called equivalent classes. Test inputs can be derived from each

partition. A comprehensive test must generate at least one input for each

partition.

Moreover, ETL testers typically do not have access to real data because of

the confidentiality of data in the sources, and they need to generate mock

data that correctly represents the characteristics of the real data. There are

a number of mock data generator tools, such as Mockaroo [68] and

Databene Benerator [69] that randomly generate test data. However, testers

must generate data in a systematic manner, such as through input space par-

titioning techniques to cover data from all equivalent classes.

5.2 Performance, Stress, and Scalability Testing of ETL Process
Performance tests assess whether or not the entire ETL process is performed

within the agreed time frames by the organizations [70]. The goal of

Table 9 Mutation Operators Used to Inject Faults in Health Data
Operator Description

AR Add random record

DR Delete random record

MNF Modify numeric field

MSF Modify string field

MNFmin Modify min of numeric field

MNFmax Modify max of numeric field

MSFlength Modify string field length

MFnull Modify field to null
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performance testing of ETL is to assess ETL processing time under typical

workloads that are comparable with the average expected data volume [42].

Stress tests also assess the ETL processing time but under a workload

which is significantly larger than the expected data volume. The goal of

stress testing of ETL is to assess ETL tolerance by verifying whether or

not it crashes or fails when dealing with an extraordinarily large volume

of data.

Scalability testing of ETL is performed to assess the process in terms of its

capability to sustain further growth in data warehouse workload and orga-

nizational requirements [1, 70]. The goal of scalability testing is to ensure

that the ETL process meets future needs of the organization. Mathen [1]

stated that this growth mostly includes an increase in the volume of data

to be processed through the ETL. As the data warehouse workload grows,

the organizations expect ETL to sustain extract, transform, and load times.

Mathen [1] proposed an approach to test the scalability of ETL by executing

ETL loads with different volumes of data and comparing the times used to

complete those loads.

In all of these testing activities, the processing time of ETL is evaluated

when a specific amount of data is extracted, transformed, and loaded into the

data warehouse [8]. The goal is to determine any potential weaknesses in

ETL design and implementation, such as reading some files multiple times

or using unnecessary intermediate files or storage [1]. The initial extract and

load process, along with the incremental update process must be evaluated

through these testing activities.

Wyatt et al. [71] introduced two primary ways to measure the perfor-

mance of ETL, i.e., time-based and workload-based. In the time-based

method, they check if the ETL process was completed in a specific time

frame. In the workload-based approach they test the ETL process using a

known size of data as test data, and measure the time to execute the work-

load. Higher performing ETL processes will transfer the same volume of data

faster. The two approaches can be blended to check if the ETL process was

completed in a specific time frame using a specific size of data.

The above testing approaches test the entire ETL process under different

workload conditions. However, the tests should also focus on the extraction,

transformation, and load components separately and validate each compo-

nent under specific workloads. For example, the performance testing of

the extraction component verifies whether or not a typical sized data can

be extracted from the sources in an expected time frame. Applying the tests

separately on the constituent ETL components and procedures helps localize
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existing issues in the ETL design and implementation, and determine the

areas of weaknesses. The weaknesses can be addressed by using an alternative

technology, language, algorithm, or intermediate files. For example, con-

sider the performance issue in the Load component of ETL, which incor-

rectly uses the full mode and loads the entire data every time instead of

loading only the new added or modified data. In this case, the execution

time of the Load component is considerably longer than the Extract and

Transform components. This problem can be localized if we apply the tests

on the individual components instead of on the entire ETL process.

5.3 Reliability Testing of ETL Process
This type of testing ensures the correctness of the ETL process under both

normal and failure conditions [71]. Normal conditions represent situations

in which there are no external disturbances or unexpected terminations in

the ETL process. To validate the reliability of the ETL process under normal

conditions, we want to make sure that given the same set of inputs and initial

states, two runs of ETL will produce the same results. We can compare the

two result sets using properties such as completeness, consistency, and

validity.

Failure conditions represent abnormal termination of ETL as a result of

loss of connection to a database or network, power failure, or a user termi-

nating the ETL process. In such cases the process should be able to either

complete the task later or restore the process to its starting point. To test

the reliability of the ETL process under abnormal conditions, we can sim-

ulate the failure conditions and compare the results from a failure run with

the results of a successful run to check if the results are correct and complete.

For example, we should check that no records were loaded twice to the tar-

get data warehouse as a result of the failure condition followed by rerunning

the ETL process.

Most ETL implementations indirectly demonstrate reliability features by

relying on the ACID properties of DBMSs [71]. If DBMSs are used in a data

warehousing system to implement the sources or the target data warehouse

components, these components recover from problems in the Extract,

Transform, or Load processes. However, there are data management prod-

ucts other than DBMSs used in the data warehousing systems that do not

support ACID properties (e.g., Google Cloud Bigtable [72] that is a NoSQL

data management product). In such cases, reliability needs to be addressed

separately and appropriate test cases must be designed.
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Note that balancing tests may be performed to compare the two result

datasets in both normal and abnormal conditions to verify the proposed

properties in addition to other reliability tests.

5.4 Regression Testing of ETL Process
Regression tests check if the system still functions correctly after a modifi-

cation. This testing phase is important for ETL because of its evolving nature

[8]. With every new data warehouse release, the ETL process needs to evo-

lve to enable the extraction of data from new sources for the new applica-

tions. The goal of regression testing of ETL is to ensure that the

enhancements and modifications to the ETL modules do not introduce

new faults [73]. If a new program is added to the ETL, interactions between

the new and old programs should be tested.

Manjunath et al. [74] automated regression testing of ETL to save effort

and resources with a reduction of 84% in regression test time. They

used Informatica [49] to automatically generate test cases in SQL format,

execute test cases, and compare the results of the source and target data.

However, their approach uses the retest all [75] strategy, which reruns

the entire set of test cases for regression testing of the ETL process. Instead,

they could use regression test selection [75] techniques to run a subset of test

cases to test only the parts of ETL that are affected by project changes. These

techniques classify the set of test cases into retestable and reusable tests for

regression testing purposes in order to save testing cost and time.

A retestable test case tests the modified parts of the ETL process and needs

to be rerun for the safety of regression testing. A reusable test case tests the

unmodified parts of the ETL process and does not need to be rerun, while it

is still valid [76].

Mathen [1] proposed to perform regression testing by storing test inputs

and their results as expected outputs from successful runs of ETL. One can

use the same test inputs to compare the regression test results with the pre-

vious results instead of generating a new set of test inputs for every regression

test [1].

5.5 Usability Testing of ETL Process
The ETL process consists of various components, modules, databases, and

intermediate files with different technologies, DBMSs, and languages that

require many prerequisites and settings to be executed on different plat-

forms. ETL is not a one-time process; it needs to be executed frequently
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or any time data is added or modified in the sources. As a result, it is impor-

tant to execute the entire process with configurations that are easy to set up

and modify.

Usability testing of ETL process assesses whether or not the ETL process

is easy to use by the data warehouse implementer. This testing activity deter-

mines how easy it is to configure and execute ETL in a data warehouse

project.

We suggest to assess the usability of the ETL process by measuring the

manual effort involved in configuring ETL in terms of time. The configu-

ration effort includes (1) providing connection information to the sources,

data staging area, or target data warehouse, (2) installing prerequisite pack-

ages, (3) preprocessing of data before starting the ETL process, and (4)

human interference to execute jobs that run each of the extract, transform,

and load components. We can also do a survey with different users that gives

us more information about the difficulty level.

5.6 Summary
Table 10 summarizes the existing approaches to test different aspects of the

ETL process. As can be seen from the table, scalability, reliability, and usabil-

ity testing were not reported in the literature even though they are critical

for a comprehensive testing of the process.We identified the following open

problems in ETL testing. We summarize areas and ideas for future

investigation.

• In the functional testing of ETL, there is not a systematic way to assure the

completeness of the test cases written/generated as a set of queries. As

with the functional testing of underlying data, we can use appropriate

test adequacy criteria to evaluate and create a thorough test.

• There is a lack of systematic techniques to generate mock test inputs for

the functional testing of the ETL process. We can use input space partitioning

techniques to generate test data for all the equivalent classes of data. Cur-

rent tools generate random test data with not much similarity with the

characteristics of real data.

• The fault finding ability of the balancing tests is not evaluated in the sur-

veyed approaches. We can use mutation analysis for this evaluation.

• In the performance, stress, and scalability testing of ETL, the existing

approaches test the entire ETL process under different workloads. We

can apply tests to the individual components of ETL to determine the

areas of weaknesses.
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Table 10 Testing Extract, Transform, and Load (ETL)
Testing Category GuardianIQ [48] Informatica [49] QuerySurge [65] Wyatt et al. [71] Mathen [1] Manjunath et al. [74]

Gray shaded rows indicate that we did not find approaches or tools to support that kind of testing activity even though they are necessary for a real-world data-warehouse.



• The heterogeneous data involved in the data warehousing systems

make the performance, stress, and scalability testing of the ETL process

difficult. Testers must use large heterogeneous datasets in order to per-

form tests.

• The existing ETL implementations rely on ACID properties of transac-

tion systems, and ignore the reliability testing of the ETL process. We can

perform the balancing tests proposed in Section 5.1.2 to compare the

results of the ETL process under normal conditions with the ones under

abnormal conditions to verify the properties, namely, completeness,

consistency, and syntactic validity.

• No approach has been proposed to test the usability of the ETL process. We

define this testing activity as the process of determining whether or not

the ETL process is easy to use by the data warehouse implementer. One

can test the usability of the ETL process by assessing the manual effort

involved in configuring ETL that is measured in terms of time.

6. TESTING FRONT-END APPLICATIONS

Front-end applications in data warehousing are used by data analyzers

and researchers to perform various types of analysis on data and generate

reports. Thus, it is important to test these applications to make sure the data

are correctly, effectively, and efficiently presented to the users.

6.1 Functional Testing of Front-End Applications
This testing activity ensures that the data is correctly selected and displayed

by the applications to the end users. The goal of testing the functionality of

the front-end applications is to recognize whether the analysis or end result

in a report is incorrect, andwhether the cause of the problem is the front-end

application rather than the other components or processes in the data

warehouse.

Golfarelli and Rizzi [8] compared the results of analyses queries displayed

by the application with the results obtained by executing the same queries

directly (i.e., without using the application as an interface) on the target data

warehouse. They suggested two different ways to create test cases as queries

for functionality testing. In a black-box approach, test cases are a set of

queries based on user requirements. In a white-box approach, the test cases

are determined by defining appropriate coverage criteria for the dimensional

data. For example, test cases are created to test all the facts, dimensions, and

attributes of the dimensional data.
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The approaches proposed by Golfarelli and Rizzi are promising. In our

project, we have used Achilles, which is a front-end application that performs

quality assurance and analysis checks on health data warehouses in the OMOP

[77] data model. The queries in Achilles are executable on OMOP.

The functional testing of the front-end applications must consider all

possible test inputs for adequate testing. As it is impossible to test the func-

tionality of the front-end applications with all possible test inputs, we can use

systematic input space partitioning [67] techniques to generate test data.

6.2 Usability Testing of Front-End Applications
Two different aspects of usability of front-end applications need to be evalu-

ated during usability testing, namely, ease of configuring and understandability.

First, we must ensure that the front-end application can be easily config-

ured to be connected to the data warehouse. The technologies used in the

front-end application should be compatible with the ones used in the data

warehouse; otherwise, it will require several intermediate tools and con-

figurators to use the data warehouse as the application’s back-end. For exam-

ple, if an application uses JDBC drivers to connect to a data warehouse, and

the technology used to implement the data warehouse does not support

JDBC drivers, it will be difficult to connect the front-end apps to the

back-end data warehouse. We may need to reimplement parts of the appli-

cation that set up connections to the data warehouse or change the query

languages that are used. We suggest evaluating this usability characteristic

by measuring the time and effort required to configure the front-end appli-

cation and connect it to the target data warehouse.

Second, we must ensure that the front-end applications are understand-

able by the end users [70], and the reports are represented and described in a

way that avoids ambiguities about the meaning of the data. Existing

approaches to evaluate the usability of generic software systems [78] can

be used to test this aspect of front-end applications. These evaluations

involve a number of end users to verify the application. Several instruments

are utilized to gather feedback from users on the application being tested,

such as paper prototypes [79], and pretest and posttest questionnaires.

6.3 Performance and Stress Testing of Front-End Applications
Performance testing evaluates the response time of front-end applications

under typical workloads, while stress testing evaluates whether the applica-

tion performs without failures under significantly heavy workloads. The
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workloads are identified in terms of number of concurrent users,

data volumes, and number of queries. The tests provide various types of

workloads to the front-end applications to evaluate the application

response time.

Filho et al. [80] introduced the OLAP Benchmark for Analysis Services

(OBAS) that assesses the performance of OLAP analysis services responsible

for the analytical process of queries. The benchmark uses a workload-based

evaluation that processes a variable number of concurrent executions using

variable-sized dimensional datasets. It uses the Multidimensional Expres-

sions (MDX) [81] query language to perform queries over multidimensional

data cubes.

Bai [82] presented a performance testing approach that assesses the per-

formance of reporting systems built using the SQL Server Analysis Services

(SSAS) technology. The tool uses the MDX query language to simulate user

requests under various cube loads. Metrics such as average query response

time and number of queries answered are defined to measure the perfor-

mance of these types of reporting services.

The above two tools compare the performance of analysis services such

as SSAS or Pentaho Mondrian. However, the tools do not compare analysis

services that support communication interfaces other than XML for Analysis

(XMLA), such as OLAP4J.

6.4 Summary
Table 11 summarizes existing approaches that test front-end applications

in data warehousing systems. Although it is important to assess usability,

none of the approaches addressed usability testing. Stress testing of the

front-end applications is not reported in the surveyed approaches. Below

Table 11 Testing Front-End Applications
Test Category Golfarelli and Rizzi [8] Filho et al. [80] Bai [82]

Gray shaded rows indicate that we did not find approaches or tools to support that kind of testing activity
even though they are necessary for a real-world data-warehouse.
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is a summary of the open problems in testing front-end applications, and

ideas for future investigation.

• Existing approaches proposed for functionality testing of the front-end applica-

tions compare the results of queries in the applicationwith theonesobtained

by directly executing the same queries on the target data warehouse.

• Functional testing of the front-end applications must consider all types of test

inputs. We can use input space partitioning techniques to generate test

data for this testing activity.

• To support usability testing of front-end applications, we define a new aspect

of testing to assess how easy it is to configure the application. We can test

this aspect of usability by measuring the manual effort involved in con-

figuring the front-end application in terms of time.

• The voluminous data involved in the data warehousing systems makes

performance and stress testing of the front-end applications difficult. Testers

must use large datasets in order to perform realistic tests.

7. CONCLUSION

In this chapter, we described the challenges, approaches, and open

problems in the area of testing data warehouse components. We described

the components of a data warehouse using examples from a real-world

health data warehouse project. We provided a classification framework that

takes into account what component of a data warehouse was tested, and how

the component was tested using various functional and nonfunctional testing

and evaluation activities. We surveyed existing approaches to test and eval-

uate each component. Most of the approaches that we surveyed adapted tra-

ditional testing and evaluation approaches to the area of data warehouse

testing. We identified gaps in the literature and proposed directions for fur-

ther research. We observed that the following testing categories are open

research areas.

• Security testing of the underlying data in the source and target components

• Reliability testing of the ETL process

• Usability testing of the ETL process

• Usability testing of the front-end applications

• Stress testing of the front-end applications

Future research needs to focus on filling the above gaps for comprehensively

testing data warehouses. Moreover, the following techniques need to be

developed or improved in all the testing activities in order to enhance the

overall verification and validation of the data warehousing systems.
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Test automation needs to improve to decrease the manual effort involved

in data warehouse testing by providing effective test automation tools. The

data involved in data warehouse testing are rapidly growing. This makes it

impossible to efficiently test data warehouses while relying on manual activ-

ities. Existing testing approaches require a lot of human effort in writing test

cases, executing tests, and reporting results. This makes it difficult to run tests

repeatedly and consistently. Repeatability is a critical requirement of data

warehouse testing because we need to execute the tests whenever data

are added or modified in a data warehouse. The approaches previously dis-

cussed in this chapter are based on statistical analysis, manual inspections, or

semiautomated testing tools that still need manual effort for generating test

input values and assertions. Existing approaches to software test automation

can be utilized to fully automate the tasks involved in data warehouse testing.

However, automatic test assertion generation (oracle problem) is an

open problem for software systems in general [83] because the expected test

outputs for all possible test inputs are typically not formally specified. Testers

often manually identify the expected outputs using informal specifications

or their knowledge of the problem domain. The same problem exists for

automatically generating test assertions for testing the data warehouse

components. If the expected outputs are not fully specified in the source-

to-target transformation rules or in data warehouse documentation, it will

be difficult to automatically generate test assertions. Future research needs

to fill the gap between informal specifications and formally specified outputs

to automatically generate test assertions.

Like other generic software systems, data warehouse projects need to

implement agile development processes [84], which help produce results

faster for end users and adapt the data warehouse to ever-changing user

requirements [85]. The biggest challenge for testing an agile data warehouse

project is that the data warehouse components are always changing. As a

result, testing needs to adapt as part of the development process. The design

and execution of these tests often take time that agile projects typically do

not have. The correct use of regression test selection techniques [75] can

considerably reduce the time and costs involved in the iterative testing of

agile data warehousing systems. These techniques help reduce costs by

selecting and executing only a subset of tests to verify the parts of the data

warehouse that are affected by the changes. At the same time, testers need to

take into account trade-offs between the cost of selecting and executing

tests, and the fault detection ability of the executed tests [75].

There will be a growing demand for real-time analysis and data requests

[3]. The data warehouse testing speed needs to increase. Most of the existing
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functional and nonfunctional testing activities rely on testing the entire

source, target, or intermediate datasets. As the data are incrementally

extracted, transformed, and loaded into the target data warehouse, tests need

to be applied to only the newly added or modified data in order to increase

the speed of testing. Testing with the entire data should be applied only in

the initial step where the entire data are extracted from the sources, trans-

formed, and loaded to the target data warehouse for the first time.

Most of the existing tools rely on using real data as test inputs, while

testers typically do not have access to the real data because of privacy

and confidentiality concerns. Systematic test input generation techniques

for software systems can be used in future studies to generate mock data with

the characteristic of the real data and with the goal of adequately testing the

data warehouse components. For example, we proposed to use random

mock data generation tools that populate a database with randomly gener-

ated data while obeying data types and data constraints. Genetic and other

heuristic algorithms have been used in automatic test input generation for

generic software systems [86] with the goal of maximizing test coverage.

The same idea can be utilized in data warehouse testing to generate test data

for testing different components with the goal of maximizing test coverage

for the component under test.

Identifying a test adequacy criterion helps testers evaluate their set of tests

and improve the tests to cover uncovered parts of the component under test.

Determining adequate test coverage is a limitation of current testing

approaches. Further research needs to define test adequacy criteria to assess

the completeness of test cases written or generated for different testing

purposes. For example, test adequacy criteria for testing the underlying

data can be defined as the number of tables, columns, and constraints that

are covered during a test activity. The adequacy criteria can also be

defined as the number of data quality rules that are verified by the tests. Test

adequacy criteria for white-box testing of the ETL process can be defined as

the number of statements or branches of the ETL code that are executed

during the ETL tests.

The fault finding abilities of existing testing approaches need to be

evaluated. Mutation analysis techniques [50] can be used in future studies to

evaluate the number of injected faults that are detected using the written/

generated test cases. These techniques systematically seed a number of

faults that simulate real faults in the programunder test.The techniques execute

the tests and determine whether or not the tests can detect the injected faults.

Faults can be injected into both the code and the data in a data warehousing

system. Different functional and nonfunctional tests are supposed to fail as a
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result of the injected faults. For example, balancing tests should result in failures

because of imbalances caused by the seeded data faults. Functional testing of

front-end application must fail due to the incorrect data that is reported in

the final reports and analysis. A fault in the ETL codemay result in the creation

of unnecessary intermediate files during the ETL process and cause the perfor-

mance tests to fail. Using these techniques help testers evaluate test cases and

improve them to detect undetected faults.

Due to the widespread use of confidential data in data warehousing

systems, security is a major concern. Security testing of all the components

of data warehouses must play an important role in data warehouse testing.

There are different potential security challenges in data warehousing systems

that need to be addressed in future studies.

First, there are many technologies involved in the data warehousing

implementations. Different DBMSs, data warehouse products, and cloud

systems are being used to store and manage data of the sources, the interme-

diate DSA, and the target data warehouse. Correctly transforming data access

control and user privileges from one technology to the other is a significant

challenge in the security of the data warehousing systems. Future research in

security testing needs to develop techniques that compare the privileges

defined in the sources and the ones defined in the target of a transformation

to ensure that all the privileges are correctly transformed without losing any

information.

Second, due to the large number of interactive processes and distrib-

uted components involved in data warehousing systems, especially those

containing sensitive data, there are many potential security attacks [87],

such as man-in-the-middle, data modification, eavesdropping, or

denial-of-service. The goal of such attacks may be to read confidential

data, modify the data that results in misleading or incorrect information

in the final reports, or disrupting any service provided by the data war-

ehousing system. Some of the consequences can be detected using the pre-

viously discussed functional and nonfunctional testing approaches. For

example, if the data were modified through an attack, balancing tests

(Section 5.1.2) can detect the faulty data in the target data warehouse.

However, comprehensive security techniques can prevent these types of

attacks before the problem is propagated to the target data warehouse

where error detection and fault localization is muchmore expensive. Secu-

rity testing should detect vulnerabilities in the code, hardware, protocol

implementations, and database access controls in a data warehousing pro-

ject and report them to the data warehouse developers to avoid the exploi-

tation of those vulnerabilities.
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An alternative to data warehouse testing is to develop the data warehouse

in a way that proves that the data warehouse implements the specifications

and it will not fail under any circumstances. This approach is called correct

by construction [88] in software engineering context. It guarantees the correct

construction of software, and thus, does not require testing. Data war-

ehousing systems include different distributed components, programs, and

processes on various platforms that are implemented using different technol-

ogies. The large number of factors that affect data warehousing systems at

run-time makes it practically impossible to prove that a data warehouse meets

its specifications under all circumstances. Testing must be performed to val-

idate the data warehousing systems in different situations. As a result, data

warehouse testing is likely to be an active research field in the near future.
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