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a b s t r a c t 

This paper offers a novel approach to the evaluation of provenance blockchain security 

and reliability using analytical methods for assessing system availability against malicious 

miner DoS attacks. In particular, we present the reliability and availability analysis of the 

L ight W eight M ining (LWM) protocol for securing data provenance. Our analysis shows the 

reliability of the protocol and its ability to protect against malicious miner DoS attacks. 

We use digital signatures to prove integrity and non-repudiation of messages passing the 

system. We describe system behaviors using communicating sequential processes (CSP) to 

check for synchronization within a number of concurrent processes. Queuing theory is used 

to determine the average waiting time for client blockchain transactions when malicious 

miners work to slow the system. CSP and queuing theory jointly test the blockchain’s abil- 

ity to make progress despite the presence of malicious miners. Further, the methodology 

described can be extended to other blockchain applications. Additional threats, beyond the 

malicious miner DoS attack, are reserved for future work. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The first implementation and application of blockchain dis-
tributed ledger technology was Bitcoin ( Nakamoto, 2008 ). Be-
cause of Bitcoin’s ongoing success, there are now many in-
dustries seeking to utilize blockchain’s technological poten-
tial in applications other than cryptocurrency. For instance,
blockchain technology can be used to maintain provenance
metadata for systems and ensure non-repudiation and in-
tegrity of data. Bitcoin’s mining algorithm, Proof of Work (PoW)
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( Gervais et al., 2016 ), is resource-intensive in order to limit
inflation of the underlying cryptocurrency. However, noneco-
nomic applications of blockchain technology do not need
to limit the number of blocks being mined, so using PoW
would be both wasteful and exorbitant. Instead, our innova-
tive blockchain technology, Scrybe ( Brooks et al., 2018; Worley
et al., 2018 ), incorporates a lightweight mining (LWM) proto-
col that poses minimal resource requirements and maintains
the same integrity guarantees ( Brooks et al. (2018) ). To show
this, we present a proof that Scrybe, using LWM, is both re-
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Table 1 – LWM vs. common consensus algorithms. 

Consensus algorithms Permission to join Energy cost Ability to fork Blockchain technology 

PoW permissionless High Yes Bitcoin 
PoS Both Low Yes Ethereum soon 
DPoS permissionless Low Yes Bitshares 
Ripple Consensus permissionless Low Yes Ripple 
PoET Both Low Yes Intel SawtoothLake 
PBFT permissioned Low No HyperLedger Fabric 
RAFT permissioned Low No Zookeeper ( Zookeeper, 2017 ) 
LWM permissioned Negligible No Scrybe 
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iable and available against malicious miner DoS attacks. A 

lockchain provides security by having miners with conflict- 
ng interests work together. By removing incentives for collu- 
ion, we can obtain guarantees of immutability for all partic- 
pants, but we need to guarantee that miners cannot abuse 
heir presence in the system to favor certain parties. In this 
ontext, we therefore can operate a feasible permissioned sys- 
em that still includes conflicts. For example, with clinical tri- 
ls ( Brooks et al., 2018 ), we only allow medical institutions,
harmaceutical concerns, and regulators access to the chain.
ur approach of issuing them X.509 certificates ( Medury et al.,
018 )does not compromise the blockchain’s efficacy; it does,
owever, remove vulnerability to Sybil attacks ( Douceur, 2002 ) 
nd scaling problems arising from unrelated data being stored 

n chain. 
The Scrybe blockchain provides reliability and availability 

y guaranteeing three characteristics; non-repudiation, data 
ntegrity, and resilience against denial of service (DoS) at- 
acks 1 , respectively. To ensure these characteristics, we study 
he performance of Scrybe as more malicious miners are 
dded to the system. We say that a miner is malicious if it 
gnores one or more clients and excludes their transactions 
rom the block that it is currently mining and adding to the 
lockchain. When malicious miners invade the mining pro- 
ess, the system will necessarily suffer from reduced effi- 
iency and/or complete failure. We use the average client wait- 
ng time as an indicator of system performance. When the 
umber of malicious miners increase, the client waiting time 
hould concomitantly increase. We utilize queuing theory to 
alculate the client’s expected waiting time until being served.

This paper presents the LWM consensus algorithm that 
chieves consensus on who is selected to be the next miner,
s explained in Section 2.2 . LWM achieves consensus with 

ess overhead than current mining approaches; a compari- 
on of relevant blockchain consensus properties is provided 

n Table 1 . We also prove Scrybe’s relevant security properties,
hich are integrity, non-repudiation, and availability. These 

re described in Section 4 . Most importantly, we provide a the- 
retical proof, confirmed through simulation, of Scrybe’s sta- 
ility and resilience to insider threats from misbehaving min- 
1 Consideration of client-based DoS/DDoS attacks is beyond the 
cope of this paper, which focuses on the system’s availability of 
he blockchain itself while considering potentially malicious min- 
rs. Availability analysis in the presence of DDoS attacks is ad- 
ressed in Bhat’s thesis ( Bhat, 2020 ). 

p
p

b

p

rs. This is particularly significant because it is called out as 
n open problem in Narayanan et al.’s book ( Narayanan et al.,
016 ). 

The remainder of this paper addresses the above issues 
nd is organized as follows: Background and related work 
re described in Section 2 . The Scrybe blockchain provenance 
ystem is described in Section 3 . Reliability and availability 
gainst malicious miner DoS attack verification for Scrybe is 
escribed in Section 4 , which contains most of the key results 
f the paper. Section 5 describes LWM in the presence of mali- 
ious miner denial of service (DoS) attack. Finally, Section 6 of- 
ers conclusions and outlines some potential future work. 

. Background and related work 

his section provides the definition of secure data provenance 
nd implementations that are blockchain-based, and an over- 
ll comparison between LWM and other current consensus 
rotocols. 

.1. Blockchain-based data provenance implementations 

rovenance data consists of one or more artifacts of meta- 
ata that can be used to provide data provenance by tracking 
hanges to data over time, which ensures the data’s integrity 
 Technopedia, 2018 ). Secure provenance enforces accountabil- 
ty and non-repudiation, meaning a user cannot dispute re- 
ponsibility for authoring a change ( Benchoufi et al., 2017 ).
urther, in case of an error (or tampering), secure provenance 
rovides the capability to chronologically trace back changes 

n order to successfully identify the change responsible for the 
rror and when that change occurred ( Benchoufi et al., 2017 ).
ecause blockchains are designed to be a highly available dis- 
ributed databases, they provide an ideal infrastructure for im- 
lementing secure provenance ( Zinder, 2018 ). Additionally, the 
rovenance fields inherent to the blockchain data structure—

ncluding timestamp, block number, and miner’s signature—
an be leveraged and incorporated into a secure provenance 
ystem like Scrybe. For example, the integrity of a cloud com- 
uting server needs to be ensured whether it is being used 

rivately, commercially, and/or for defense-related purposes. 
A full comparison of existing systems and technologies is 

eyond the scope of this paper 2 . However, we offer the follow- 
2 See Mukhopadhyay et al. (2016) , in which some of us and others 
rovided a further overview. 
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ing examples that are particularly relevant to our discussion
of blockchain-based data provenance. ProvChain ( Liang et al.,
2017 ) is a blockchain-based provenance system that enables
auditing data operations while preserving privacy and ensur-
ing integrity. DApps ( Wikipedia contributors, 2020a ) are decen-
tralized applications that run on the top of a blockchain sys-
tem, like Ethereum blockchain technology, to enable traceabil-
ity of certifications and other important information in supply
chains. The Provenance Hyperledger ( Benningfield, 2015 ) ana-
lyzes the possibility of using Hyperledger blockchain technol-
ogy for tracing supply chains and avoiding counterfeit prod-
ucts by storing provenance data on a permissioned blockchain
network. 

2.2. Lightweight mining vs. other consensuses protocols 

Blockchain technology is classified into two categories: per-
missioned and permissionless ( Altarawneh et al., 2020; Baliga,
2017 ) based on how the miners participate. Permissionless
blockchains are open for any miner to join, whereas per-
missioned blockchains require miners to be granted access
( Baliga, 2017 ). Some examples of permissionless blockchains
include Bitcoin, which uses the Proof-of-Work (PoW), and Rip-
ple ( Schwartz et al., 2014 ), which uses the Ripple Consensus
Protocol. Miners in the Bitcoin PoW algorithm need to find
a value that solves a puzzle quickly in order to add to the
blockchain and earn cryptocurrency as a reward. Solving the
puzzle involves computing many hashes, which consumes a
lot of computational power. Additionally, the PoW algorithm is
vulnerable to 51% attacks ( Lin and Liao, 2017 ), which can oc-
cur if one entity owns more than half of the total processing
power in the Bitcoin network ( Xu, 2016 ). Similarly, the Ripple
consensus protocol is designed so that each miner must cre-
ate a list of other trusted miners that never collude against
it. This list, called the Unique Node List (UNL) ( Baliga, 2017 ),
must have less than 40% overlap with any other UNL to pre-
vent collusion. Each miner selects a set of transactions and
broadcasts it to the miners in its UNL; these miners then vali-
date the transactions and vote on them. Voting takes place in
multiple rounds, and only transactions with a super-majority
of 80% or more votes become a valid block. 

Ethereum and Intel SawtoothLake ( Baliga, 2017 ) are
blockchain platforms that are considered both permissioned
and permissionless. In Proof-of-Stake (PoS), which Ethereum
is said to be adopting soon ( Wood et al., 2014 ), miners need
to maintain a sufficiently large amount of cryptocurrency
in order to have a higher chance to be selected to create
the block and earn that new block’s reward. Miners are se-
lected randomly to prevent malicious behavior, but miners
with more stake are more likely to be selected. Another variant
of the Proof of Stake (PoS) consensus algorithm that is imple-
mented in BitShares ( bitshares.org, 0000 ) is Delegated Proof of
Stake (DPoS) ( Block.one, 2018 ); DPoS is used in permissionless
blockchain where participants stake an amount of cryptocur-
rency in order to qualify as a candidate to mine the next block.

Intel SawtoothLake uses the Proof of Elapsed Time (PoET)
consensus algorithm ( Baliga, 2017 ), which relies on specialized
hardware. All miners must run a Trusted Execution Environ-
ment (TEE), which randomly generates waiting times for each
miner. The miner with the shortest waiting time generated
by the EET will mine the next block. Practical Byzantine Fault
Tolerance (PBFT) ( Castro and Liskov, 1999 ) is a consensus algo-
rithm that is used in the HyperLedger Fabric ( Baliga, 2017 ), a
permissioned blockchain. PBFT uses the state machine repli-
cation concept ( Cachin, 2010 ) and requires 3 n + 1 replicas to be
able to tolerate n faulty nodes. Messages sent between nodes
and replicas are signed and encrypted to decrease the num-
ber of messages needed to maintain trust. However, overhead
in the network increases with the number of replicas. An-
other variant of the Byzantine fault tolerance algorithms is
the Reliable, Replicated, Redundant, and Fault-Tolerant (RAFT)
( Ongaro and Ousterhout, 2013 ) algorithm, which was devel-
oped as an alternative to Paxos ( Lamport, 1998 ) and is both
simple and practical ( Ongaro and Ousterhout, 2013 ). RAFT is
used in permissioned blockchain where the nodes collaborate
with each other to elect a leader who produces the next block.
Once a leader has been elected, another phase begins where
the leader receives a transaction, adds it to its log, and broad-
casts the log to all other nodes ( Ongaro and Ousterhout, 2013 ).
Although Scrybe is a permissioned blockchain like those de-
scribed, its consensus algorithm is distinct. Table 1 shows a
comparison between LWM and other common consensus al-
gorithms based on the blockchain type for which the algo-
rithm is used, the cost, the ability to fork into different chains,
and its application(s). A deep comparison for LWM with other
consensus algorithms based on other metrics ( Vukoli ́c, 2015 )
such as the ability of the algorithm to tolerate faults or
crashes is required; however, LWM is under development and
such comparisons will be offered in the future work. Scrybe,
with the LWM algorithm, is a fast, scalable, reliable, and eco-
friendly alternative for a permissioned network of miners. 

3. Scrybe: A secure-provenance blockchain 

This section provides an overview of Scrybe—a secure-
provenance blockchain—by explaining the blocks and trans-
actions and the algorithm itself. 

3.1. Blocks and transactions 

Transactions and blocks are the main components in the
Scrybe blockchain. Computational actors called miners are
responsible for mining the blocks and adding them to the
blockchain. Mining is the process of including a transaction
in a data block and adding that block to the blockchain. A
transaction in Scrybe includes client details such as name,
signature, and public key, as well as the submission times-
tamp, the hash of the source data using the SHA-3 algorithm,
and the persistent URLs (PURLs) that point to the source data
(extraneous to the blockchain). Miners aggregate a group of
transactions and add them as one block to the blockchain
upon a successful mining step. Miners use the Merkle root
( Becker, 2008 ) to quickly verify if any of the transactions un-
der consideration are already included in another block. The
LWM algorithm selects a miner that will be responsible for
adding the block to the blockchain and broadcasting the block
to other miners to prevent duplicate blocks. In addition to the
Merkle root, miners use the hash of the previous block and the
miner’s signature to check for potential malicious behavior
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Fig. 1 – Digital signature diagram, adapted from 

( Dig-Signature, 2019 ). 
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uch as a miner purposely omitting transactions or unautho- 
ized miner(s) broadcasting invalid blocks ( Guin et al., 2018 ). 

.2. Lightweight mining algorithm 

ash numbers broadcast by miners can be based on a miner- 
enerated random number. Collusion can occur when several 
iners remain to manipulate the process. However, LWM has 

he ability to function as long as good miners protect against 
ollusion ( Pirretti et al., 2006 ). The LWM algorithm’s strength 

omes from requiring all miners to share their hash first. This 
equirement prevents miners from withholding their number 
nd tampering with the process. Without this requirement, a 
iner could wait until all other miners have submitted their 

umbers, then generate a number that excludes or selects a 
ertain miner. The enormous amount of time needed to invert 
reverse-engineer) the hashes created by the LWM algorithm 

akes this situation highly unlikely in Scrybe. Scrybe also re- 
uires each miner to include their hash to protect against de- 
iability. Another strength of the LWM algorithm is the abil- 

ty to function correctly as long as there is at least one good 

iner (the 
∑ 

j r j mod N remains random). As long as the trans- 
ction is in one good miner’s pool, the transaction will be 
ined, but it will take longer for the transaction to be added 

o the blockchain if there are a large number of bad min- 
rs. Therefore, to guarantee the miners in Scrybe are able to 
each consensus, we assume that the number of malicious 

iners is less than 

1 
3 of the total number of miners. This as- 

umption relies on Lamports Byzantine Fault Tolerance (BFT) 
 Lamport et al., 2019 ) results, where it is impossible to reach 

onsensus if the number of faulty nodes, f is not less than 

1 
3 

f the total miners, n . This also assumes that the percentage 
f miners participating in the mining process is greater than 

0% of the total number of miners. For the sake of simplicity,
his version covers the aspects that are relevant to the scope 
f this paper. The scope of this paper includes the analysis of 
he system’s availability against sabotage by malicious miners 
s a form of denial of services (DoS) attacks ( Narayanan et al.,
016 ). The scope excludes the analysis of the nodes’ ability 
o converge to a decision despite the presence of arbitrary er- 
ors, and excludes the analysis of the ability of LWM to reach 

onsensus despite the presence of malicious miners 3 , these 
ssues are covered by Bhat, 2020 ). The LWM algorithm code 
 Brooks et al., 2018; Guin et al., 2018 ) is as follows: 

. Secur ity ver ification for scrybe 

stablished techniques are applied here to analyze LWM’s be- 
avior and its ability to counteract known attacks. The pre- 
ented analysis proves that the lightweight mining (LWM) pro- 
ocol is secure and that it prevents relevant attacks such as 

alicious miner denial of service (DoS) attacks. According to 
3 This paper considers possible attacks in the system that are 
aused by miners delaying responses or/and forging messages. 
iming issues and other aspects are not presented here because 
) they are not relevant to the problem we are discussing, 2) these 
ssues depend on entirely different tools of verification, and 3), the 
age limit. 

i  

s
s  

n
t
n
d

arayanan’s work ( Narayanan et al., 2016 ), DoS issues in min- 
ng protocols remain an open issue. The systems work, but 
here is not a theoretical understanding as to why they do so.
stablished tools are used here to give support for LWM guar- 
nteeing that transactions eventually arrive on the chain. Dig- 
tal signatures are leveraged in the LWM protocol to serve two 
urposes: integrity, and non-repudiation. Communicating Se- 
uential Processes (CSP) is used to describe system behaviors 
nd to check for synchronization within a number of concur- 
ent processes. Queuing theory is used with the LWM proto- 
ol to show the algorithm’s availability under malicious miner 
oS attacks. (Other adversarial behavior ( Cachin and Vukoli ́c,
017 ), such as the Sybil attack, are out of the scope of this pa-
er ( Narayanan et al., 2016 )). 

.1. Integrity 

 system’s integrity is guaranteed when any corruption or 
ampering of its data can always be detected ( Bishop, 2003 ).
he LWM protocol in Scrybe uses digital signatures to assure 
ystem integrity and ensure that messages are not altered 

n transit. These messages can include financial transactions,
oftware distributions, or any other message where there is a 
eed to detect data tampering or forgery. A digital signature 

s implemented in Scrybe using a combination of the Rivest- 
hamir-Adleman (RSA) algorithm ( Katz and Lindell, 2014 ) and 

he SHA-256 cryptography hash function ( Delfs et al., 2002 ).
igital signature use is illustrated in Fig. 1 . 

.2. Non-repudiation 

n the LWM protocol, when a client sends a transaction D 1 to
 miner and the miner sends a block B1 (where B1 = Sign1,
ign2,..., SignN) to the blockchain, all parties obtain the evi- 
ence from the digital signature that the transaction was sent 
y the client and the block was sent by the miner, as illustrated 

n Fig. 1 . The miner can prove that the processed message was
ent by the client by presenting 

{
[ D 1] 

}
sk a 

, which is the message 
igned by the client’s private key ( Ryan et al., 2001 ). Therefore,
either the sender nor the receiver of a message can deny 
ransmitting or receiving the messages. Because digital sig- 
atures make deniability impossible, they provide high confi- 
ence authentication. 
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Table 2 – Format of messages. 

T i , B i ::= 

Messages (T: Transactions, B: 
Blocks) 

i ( ∈ User ) Agent identities 
sk a ( ∈ Key ) Secret keys 
[ T 1 ] sk a Signing of message T 1 with agent 

a ’s secret key 
[ < Sign 1 , · · · , Sign N > ] sk b 

Block: a group of N transactions 
signed with 
agent b’s secret key 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Availability 

When malicious miners drop valid transactions or erase
transactions from their respective blocks, the system’s avail-
ability is put at risk ( Narayanan et al., 2016; Ryan et al., 2001 ).
However, this risk is mitigated because blockchains are dis-
tributed systems. Clients submit transactions to all the miners
in the blockchain, so any honest miner will include the trans-
actions when they create a new block. Subsequently, miners
that decide not to add a block to the blockchain will have a
shorter chain, which will not match the copy that all min-
ers have reached consensus on the network. Queuing theory
( Kovalenko, 1968 ) is used to predict how much of a network an
intruder can control. This is discussed further in Section 5.2 . 

4.4. Communications sequential processes (CSP) modeling

Communicating sequential processes (CSP) is a mathemati-
cal framework for describing and analyzing system behavior
of multiple agents communicating by passing messages back
and forth ( Hoare, 1978 ). CSP describes two different classes:
events and processes. Events represent communications, and
processes represent behaviors. Each process is a set of guarded
commands, where the guard is a condition that must be true
for the command to execute, and each command execution is
a transition to a new state. To achieve synchronization within
numerous concurrent processes, the input and output must
be synchronized (i.e., when one process is ready to send an
output the other is ready to receive the input). If either one is
not ready to communicate, the process is put in a wait queue.
The system enters a non-deterministic state if more than one
guard condition can be satisfied simultaneously ( Hoare, 1978 ).
Ryan et al. (2001) used CSP modeling to formalize security
properties, which we use to model the LWM security proto-
col. Each message that could be sent by anyone in the system
is treated as a command. Messages in this analysis are of two
types, transactions and blocks, that have specific structures to
include encryption and signing. To apply the CSP framework
to analyze the LWM protocol, we must first define all the possi-
ble messages and their respective formats. These are defined
in Table 2 . 

We model the participants using the LWM protocol in CSP
and considered four agents: the client (initiator), the miner (re-
sponder), the server (in which the blockchain is stored), and
the intruder (actor compromising the process). In this descrip-
tion, we use send channels as outputs and receive channels as
inputs. Agents of the LWM protocol are described below: 
• The process-local environment opens a session with agent
b. Client a initiates the communications by sending a
signed transaction, and running the protocol in CSP as fol-
lows: 

Cl ient (a ) = env ? b : Agent → send.a.b. [ T 1 ] sk a → 

�sk a ∈ Key 

a, b ∈ User 

• The selected miner, “miner b, ” receives the transactions in
its pool and creates and sends a block. This miner runs the
protocol in CSP as follows: 

Miner (b) = 

( 

receive.a.b. [ T 1 ] sk a → 

send.b.s. [ Sign 1 , Sign 2 , · · · , Sign N ] sk b 
→ 

) 

�sk a , sk b ∈ Key 
a, b, s ∈ User 

• Server s receives the block and adds it to the blockchain
copy that it stores. The server runs the protocol in CSP as
follows: 

Server (s ) = 

( 

receive.b.s. [ Sign 1 , Sign 2 , · · · , Sign N ] sk b 
→ 

ad d . [ B 1 ] sk b 
→ STOP) 

) 

�sk a , sk b ∈ Key 

• The intruder y runs the protocol in CSP as follows: 

I ntrud er (Y ) = learn ? m : messages → I ntrud er (close (Y ∪ { m } )) 
�say ? m : Y ∩ messages → I ntrud er (Y ) 

Y represents the subset of facts that the intruder knows.
All the messages that might be generated or accepted by trust-
worthy agents or by server processes are represented in a sub-
set of the facts called messages . Additionally, close(Y) represents
the subset of all the facts that are possible under the rules of
encryption. Described in CSP, the LWM protocol runs as fol-
lows: 

1. The client sends a signed transaction (provenance meta-
data) T 1 to the miners. The signature on the transaction
works as evidence that the message was sent by the client.
For example, the transaction sent to the miner b will be as
follows: 

Message 1 a → b : [ T 1 ] sk a 

evidence.b. [ T 1 ] sk a ⇒ a sent([ T 1 ] sk a ) 

We model the behavior of an arbitrary user Agent a as fol-
lows: 

Agent a (Q ) = 

�b∈ Agent,m ∈ Q send.a.b.m → Agent a (Q ) 
�m ∈ Q evidence.a.m → Agent a (Q ) 

Any user, such as Agent a , with the information in Q can
send any of this information in Q and can use it as evi-
dence. 



6 c o m p u t e r s  &  s e c u r i t y  1 0 2  ( 2 0 2 1 )  1 0 2 0 9 8  

Table 3 – Run between client and intruder. 

Externally Agent Which Sees Intruder 

take.A.I.m A Send .A.I .m learn. [ T 1 ] sk a 

modi fy. [ T ′ 1 ] sk a 

fake.I.B.m B Receive.I.B.m say. [ T 1 ] sk a 
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intruder, adapted from Ryan et al. (2001) . 
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2. The miners verify that message T 1 was not tampered with 

in transit and ensure that the client signed it using their 
private key. Miners will drop the transaction if the verifica- 
tion fails. 

3. The miners keep all valid transactions in a pool and gen- 
erate a candidate block. Each block is composed of these 
components: The miner ID, the block ID, the timestamp,
the signature of the miner, a list of the transactions, all the 
random values generated by miners and their hashes, both 

hashes of the current block and the previous block, and the 
root hash of the Merkle tree. The selected miner then signs 
the block using its private key and adds it to the blockchain.
Assuming b is chosen as the miner, b sends the following 
message to all the servers: 

Message 2 b → s 1 : [ Sign 1 , Sign 2 , · · · , Sign N ] sk b 

4. The blockchain (server) verifies the block it has received 

from the miner, and only adds verified blocks to the chain.

.4.1. Intruder capabilities described in CSP prove integrity 
nd non-repudiation 

n intruder may be a legitimate user with an identity and pub- 
ic and private keys. The other nodes including the server will 
ommunicate with the intruder as a legitimate user. The in- 
ruder will be given certain initial knowledge that he or she 
ses to deduce further information about the traffic he ob- 
erves in the medium. Because of the properties of the encryp- 
ion, it is infeasible for the intruder to forge the private and/or 
ublic keys Ryan et al. (2001) . Therefore, it is difficult for any 

ntruder to tamper with messages while they are in transit. An 

ntruder could cause a type of denial of service (DoS) attack by 
illing the message, thus preventing it from being delivered.
owever, because all data are in clear text in this model, there 

s no negative impact associated with intruders having their 
wn copy of the data. 

In this network, the events say.m and learn.m that are exe- 
uted by the intruder are the replacements for the receive.a.b.m 

nd send.a.b.m events that are executed by the agents, which 

onnect the network. The receive and say channels connect to 
orm the fake channel, and the send and learn channels con- 
ect to form the take channel. This is represented in Fig. 2 . The
otted lines represent renaming. The trace that can happen 

etween the client and intruder is shown in Table 3 . It shows 
he two component processes with their renaming, what the 
ntruder might deduce, and how the intruder might attempt 
o change the data being transmitted. It should be noted that 
dding more clients, miners, and blockchains does not change 
he flow because the process collapses to what is given in 

able 3 . The intruder who intercepted the transaction might 
ttempt to tamper with the data T 1 producing T ′ before send- 
1 
ng it to the miner. However, this implies that T 1 	 = T ′ 1 . so the
erification fails and the miner drops the transaction as de- 
ned in the protocol. 

. LWM vs. malicious miner denial of service 

DoS) attack 

n this section, we use CSP to describe the intruder’s behav- 
or causing a DoS attack, and offer a queue model analysis to 
how the average waiting time for the victim client transac- 
ions to be added to the blockchain. 

.1. DoS attack described in CSP 

 malicious miner may exclude all transactions originating 
rom a particular client from any block that the miner pro- 
oses. This is shown in Table 4 . 

Since the victim client’s transaction ( T 1 ) was not added to 
lock(s) proposed by miner(s), the client will have to wait un- 
il an honest miner proposes a block, see Table 5 , which will
ontain the client’s transaction. 

Consider the case where a malicious miner ( F ) decides to 
rop a block generated by an honest miner. To model the Ma- 

icious miner process, we assume the set facts includes the ini- 
ial knowledge of all agent names, public keys that belong to 
ther agents, the hashing algorithm, and all blocks. The ma- 

icious miner always gets the block being transmitted, and ei- 
her drops the block or adds it to the chain. 

alicious miner (F ) = learn ? m : blocks → Malicious miner (induce (F ∪ { m } ))
�drop? m : F ∩ blocks → Malicious miner (F ) 

�ad d ? m : F ∩ blocks → Malicious (F ) 
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Table 4 – Case: Miner performing a DOS attack on a client. 

Externally Agent Which Sees Miner 

take.A.B.m A Send.A.B.m learn. [ T 1 ] sk a 

drop. [ T 1 ] sk a 

fake.B.S 1 .m S 1 Receive.B.S 1 .m say. [ < Sign 2 , · · · , Sign N > ] sk b 
> 

Fig. 3 – The queue model logic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Queuing theory analysis 

The victim’s transactions eventually arrive at the good min-
ers’ pool ( Hambolu, 2018 ), which is proved using a Petri Net
( Salimifard and Wright, 2001 ). However, in this paper, we are
also interested in the average waiting time before a client’s
transaction is added to the blockchain. To measure this, we
utilized queuing theory. There are two types of clients: “regu-
lar clients,” whose transactions are mined by any miner, and
“victim clients,” whose transactions are mined only by good
miners. We assume that all transactions from regular clients
and victim clients will end up in the miner’s pool. When a
good miner is selected, the transactions follow the first-come-
first-serve (FCFS) rule. When a malicious miner is selected,
victim client transactions are ignored, and only regular client
transactions are served. Victim client transactions continue to
wait in the good miners’ pool until one of the good miners is
selected to mine the next block. We assume in our analysis
that the next miner selection process will start after the cur-
rent miner adds its block to the blockchain. A queue model is
adopted to estimate the average waiting time for the victim
client transaction to be added to the blockchain. 

It is intuitive to conclude that when the number of ma-
licious miners increases, the waiting time for victim clients’
transactions will also increase. However, the expected waiting
time is of interest. Scrybe is a single server model where only
one miner can be active at a time. As described in Fig. 3 , we
observe the average waiting time for the victim client trans-
actions to be processed. 

5.2.1. Theoretical analysis 
Scrybe follows a birth-death Markov process ( Meyer et al.,
1972 ), which is a stochastic process that has a Markov prop-
erty, also called a memoryless property. This means that one
can only predict the future state based on the present state.
A birth-death process is a continuous-time Markov chain
( Meyer et al., 1972 ) where the state variable increases or de-
creases by one, which represents the increase and decrease of
the number of transactions. In our analysis, we use the queu-
ing theory model as a single service model, where only one
miner can be active at one time. The transaction arrivals and
departures follow the Markov process and the population is
infinite. In the M/M/ 1 : ∞ /F CF S model, the M /M/ 1 denotes the
transactions that arrive with rate λ and follow the Poisson dis-
tribution ( Saaty, 1961 ), the M/ M / 1 : denotes the service times
with rate μ that are assumed to follow the exponential distri-
bution ( Saaty, 1961 ), and the M/M/ 1 denotes one single service
at a time. The capacity population of the system is assumed
to be infinite and the queue protocol is first come first serve
(FCFS). Since we are looking for the expected average waiting
time for the victim transactions to wait until they are added
to the blockchain, we use the system average waiting time for-
mula as it is known in any basic queue model ( Saaty, 1961 ),
given in W as follows: 

W = 

λ

μ(μ − λ) 
+ 

1 
μ

, where μ > λ. (1)

In this analysis, we denote the number of regular clients as
R cl ient s , the number of victim clients as V cl ient s , the number of
good miners as G miners , and the number of malicious miners as
M miners . The malicious miners ignore the victim client transac-
tions in their pool and either include other client transactions
or include nothing in the block that is being mined. This will
cause a delay before the victim client transactions are served,
so we are interested in finding the average waiting time for
both regular and victim client transactions in the good min-
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Table 5 – Case: Honest miner proposes a block that includes the client’s transaction. 

Externally Agent Which Sees Miner 

take.A.C.m A Send.A.C.m learn. [ T 1 ] sk a 

ad d . [ T 1 ] sk a 

fake.C.S 1 .m S 1 Receive.C.S 1 .m say. [ < Sign 1 , Sign N+1 · · · , Sign N+ N > ] sk c 

Fig. 4 – Queue model algorithm, adapted from Dis, 2019 . 
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Fig. 5 – Average waiting time vs. number of malicious miners with:(a) and (b): 0.1% victim client transactions, (c) and (d): 50% 

victim client transactions, (e) and (f): 98% victim client transactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ers’ pool. We assume that all clients submit their transactions
at the same rate, so we set an arbitrary number for the client
transaction generation rate as gen rate that is 6000 transactions
per second. Additionally, we assume that all miners mine at
the same rate, so we set the average mining rate as r equals
five transactions per second. Using the above conditions, the
average arrival rate λG miners 

for the good miners’ pool is given
in the following equation: 

λG miners 
= gen rate × (V cl ient s + R cl ient s ×

G miners 

(G miners + M miners ) 
) (2)

The average service rate μG miners 
is the reciprocal of the ex-

pected average waiting time. We find μG miners 
as follows: 

• Each miner has the same chance of being selected, so
the probability that the selected miner is good is given in
P G miners 

as follows: 

P G miners 
= 

G miners 

(G miners + M miners ) 
(3)

• Thus, the probability that a malicious miner is selected, de-
noted by P ′ 1 , is the probability of the victim client transac-
tions being delayed, which is as follows: 

P ′ = 1 − P (4)
1 G miners 
• Accordingly, the probability of a victim transaction being
delayed twice in a row is denoted by P ′ 2 as follows: 

P ′ 2 = (1 − P G miners 
) 2 (5)

• Therefore, the probability of a victim transaction being de-
layed n times in a row is denoted by P ′ n as follows: 

P ′ n = (1 − P G miners 
) n (6)

Given that the average mining time for any transaction to
be mined is 1 

r = 0 . 2 and using the expected value formula
( Ross, 2014 ), which is the probability of a transaction to be
delayed multiplied by the number of delays multiplied by
the amount of time for each delay.

• The expected value when there are multiple probabilities
of delays, where t is the number of delays, is given in Eq. (7) ,
w hich simplifies to Eq. (11) : 

E (t) = 

1 
r 

∞ ∑ 

n =1 

n × (1 − P G miners 
) n , where 0 < P G miners 

< 1 (7)

Divided both sides by ( 1 − P G miners 
), will get: 
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Fig. 6 – The maximum average waiting time and percentage of victim clients before the system breaks down with 90% 

malicious miners: (a) for 1000 transactions, (b) for 30,000 transactions, (c) for 1000 transactions and fixed λ to 0.055556 
where it is equal to μ. 

 

r × (P G miners 
) 
E (t) 

1 − P G miners 

= 

1 
r 

∞ ∑ 

n =1 

n × (1 − P G miners 
) n −1 , where 0 < P G miners 

< 1 

(8) 

Using the variant ( Taylor, 1955; Wikipedia contributors,
2020b ) for the following geometric series: 

∞ ∑ 

n =1 

n × x n −1 = 

1 
(1 − x ) 2 

, for | x | < 1 (9) 
And substituting into Eq. 8 : 

E (t) 

1 − P G miners 

= 

1 
r × (−P G miners 

) 2 
(10) 

Thus, 

E (t) = 

1 − P G miners 
2 

(11) 
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Table 6 – Simulation parameters. 

Parameter Symbol Values 

Transactions T 1K, 30K 

Malicious miners M miners 1 to 10 
Good miners G miners | 10 − M miners | 
Victim clients V cl ient s 1 to 1000 
Regular clients R cl ient s | 1000 − V cl ient s | 
Iterations i 1 to 45 
Mining rate r 5 BPS 
Confidence interval percent CI 95% 

Transactions generation rate gen rate 6000 TPS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 – Number of victim clients transactions impact on the 
average waiting time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The average time for a transaction to be served, denoted
μG miners 

, is 1 
E (t) 

as in Eq. (12) , 

where μG miners 
is the mean service time elapsed before the

victim client transaction is added into the blockchain. 

μG miners 
= 

r × (P G miners 
) 2 

1 − P G miners 

(12)

5.2.2. Simulation analysis 
The previously described theoretical approach is imple-
mented as a discrete event simulation (DES) ( Cassandras and
Lafortune, 2009 ) in Python. It simulates the queue model us-
ing both calculated λG miners 

and μG miners 
based on the logic above,

and the simulation time is advanced based on the event that
is closest in occurrence (see Fig. 4 ). We ran 45 iterations of the
simulation with 1000 transactions, 10 miners, and 1000 clients.
The results converged after 45 runs of each scenario. We de-
signed the simulation for several scenarios based on differ-
ent numbers of malicious miners and different percentages
of victim clients, simulations parameters which are used as
inputs are shown in Table 6 . We calculated the average wait-
ing time by summing the difference between departure time
and arrival time for all transactions then dividing by the num-
ber of transactions. We adopted the 95% confidence interval
( Maria, 1997 ) to find the accuracy and the uncertainty of the
estimated average waiting time for our samples. This is cal-
culated for each scenario ( 1000 transactions) and then aver-
aged out for all 45 iterations. This is shown mathematically in
Eqs. (13)-(15) , and (16) , where i represents a scenario for 1000
transactions that is repeated 45 times for a specific number
of malicious miners and a specific percentage of victim client
transactions. 

X i = M ean 1000(Transactions ) (13)

Mean i = 

∑ 45 
i =1 ( X i ) 
45 

(14)

σi = 

√ ∑ 45 
i =1 ( X i − Mean i ) 2 

45 
(15)

95% CI i = 

1 . 96 × σi √ (16)

3 5 
5.2.3. Results 
The average waiting time calculated in the queue model sim-
ulation, which is denoted by S Wait , approximately matches the
theoretical average waiting time, which is denoted by Th Wait ,

with 95% of the 45 means within the confidence interval. The
average waiting time for the victim client transactions in-
creased exponentially as the percentage of malicious miners
increased. Table 7 shows a sample of the simulation results
for one scenario (1,000 transactions and 491 victim clients).
We applied several procedures to verify the simulation results
for each scenario; they are summarized as follows: 

• Calculate the log 10 of the average waiting time resulted
from the simulation. 

• Apply linear regression ( Seber and Lee, 2012 ) to generate
an equation that predicts the average waiting time with
different numbers of malicious miners. 

y i = b+ax i , where x i represent the number of malicious miners

(17)

• Calculate values based on above developed formula. 
• Calculate the anti-log which is 10 y i , where y i is the gener-

ated value from Eq. (17) . 

Points generated from the equation resulting from the data
linear regression are plotted in Fig. 5 along with the simula-

tion data. The graphs are done in both linear and log scales.
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Table 7 – Simulation results sample. 

Inputs Generated by simulation Outputs 

V cl ient s M miners P G miners 
λG miners 

μG miners 
S Wait Th Wait 95% CI size 

491 1 0.9 0.158 40.500 0.025 0.025 0.002 
2 0.8 0.150 16.000 0.063 0.063 0.004 
3 0.7 0.141 8.167 0.125 0.125 0.008 
4 0.6 0.133 4.500 0.229 0.229 0.014 
5 0.5 0.124 2.500 0.420 0.421 0.026 
6 0.4 0.116 1.333 0.824 0.821 0.051 
7 0.3 0.107 0.643 1.854 1.867 0.115 
8 0.2 0.099 0.250 6.573 6.614 0.408 
9 0.1 0.090 0.056 3530.911 –28.768 126.611 

Table 8 – Simulation results sample.

Inputs Generated by simulation Outputs 

V cl ient s M miners P G miners 
λG miners 

μG miners 
S Wait Th Wait 95% CI size 

491 1 0.9 0.158 40.500 0.025 0.025 0.002 
2 0.8 0.150 16.000 0.063 0.063 0.004 
3 0.7 0.141 8.167 0.125 0.125 0.008 
4 0.6 0.133 4.500 0.229 0.229 0.014 
5 0.5 0.124 2.500 0.420 0.421 0.026 
6 0.4 0.116 1.333 0.824 0.821 0.051 
7 0.3 0.107 0.643 1.854 1.867 0.115 
8 0.2 0.099 0.250 6.573 6.614 0.408 
9 0.1 0.090 0.056 3530.911 –28.768 126.611 

Algorithm 1: Lightweight Mining Algorithm (LWM). 

Initialize N ← The number of miners; 
for each miner m i , 0 ≤ i < N do 

m i generates a random number r i ; m i broadcasts the 
SHA-3 hash of r i , denoted by H(r i ) ;Once m i has 
collected all N hashes { H (r 0 ) , H (r 1 ) , · · · , H (r N−1 ) } , m i 

broadcasts r i .Once m i has collected all N random 

numbers { r 0 , r 1 , · · · , r N−1 } , m i calculates l = 

∑ 

j r j 
mod N.m l is the selected miner to create the next 
block from the collected transactions.(Without loss of 
generality, we map m i = i, 0 ≤ i < N as a simple rank 
ordering for the registered miners.) 
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oth show a reasonable match between both sets of data up to 
ight malicious miners, at which point they begin to diverge.
hen there were nine malicious miners and the system and 

imulation broke down, the results did not match. To show 

ingularity, we ran the simulation for several cases with the 
cenario of nine malicious miners to find when the system 

reaks down. This allowed us to discover the maximum wait- 
ng time that the victim client should wait to be served, and 

hat percentage of miners can be malicious before the sys- 
em breaks down. The cases are as follows: running the sim- 
lation for 1000 transactions, 30,000 transactions, and fixed λ

o be 0.055556, which is close to μ. The analysis shows that 
he system breaks down when 20% - 30% of the clients are 
ictims. Using linear interpolation, we found that the system 

ingularity occurs when the system has 26% victim clients and 
ine malicious miners (see Fig. 6 ). The average waiting time in- 
reases exponentially when the number of malicious miners 
ncreases, but 90% of miners must be malicious for the system 

o break down. Increasing the percentage of targeted clients 
as almost no impact on the average waiting time when the 
umber of malicious miners is less than 80% (see Fig. 7 ). Tar-
eting more clients when the system has only one good miner 
as a large impact on the average waiting time. 

. Conclusions 

his paper offered a novel approach to evaluate the avail- 
bility of the Scrybe blockchain, as well as its reliability, us- 
ng proven analytical methods for assessing system security.

e presented the reliability and availability analysis of the 
ightweight mining (LWM) protocol for secure provenance that 
s used in the Scrybe blockchain. The analysis showed that the 
WM protocol is reliable and that it possesses the ability to 
rotect against certain classes of DoS and delay attacks. Digi- 
al signatures were employed in the protocol to prove integrity 
nd non-repudiation of messages. We described the system 

ehavior via communication sequential processes (CSP) to 
heck for synchronization within a number of concurrent pro- 
esses. 

Queuing theory was employed to identify the average wait- 
ng time for client blockchain transactions being targeted by 

alicious miners. This tested the Scrybe blockchain’s ability 
o make progress despite the presence of malicious miners 
r resistant servers. We showed the synchronization behav- 
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ior within a number of concurrent messages running in the
system among clients and miners. Using the CSP protocol, we
also identified an intruder’s capabilities and possible threats
in the system. Additionally, we designed our queue model as a
discrete-event simulation (DES) such that the simulation time
is advanced based on the event that is closest in occurrence
and the simulation can directly advance to the occurrence
time of the next event. This design allowed the simulation to
run for longer periods of time with more transactions because
of this ability to jump ahead. We chose a 95% confidence in-
terval to guarantee accuracy as well as the uncertainty of the
estimated average waiting times for our samples to lie within
5%. We applied linear regression to generate the equation that
predicts the average waiting time with different numbers of
malicious miners. To validate the results, we calculated the
antilog value, which is equal to 10 n , where n is the generated
value by the linear equation, to verify the validity of results
and we found a strong degree of similarity. Overall, we demon-
strated that the lightweight mining (LWM) protocol described
in this paper and employed in the Scrybe blockchain is both
secure and reliable. Hence, Scrybe provides a sound basis for
a data-provenance blockchain. We showed that the LWM pro-
tocol guarantees integrity and non-repudiation of messages
using digital signatures. Via CSP, we proved that the LWM pro-
tocol is reliable against malicious miner DoS attacks; CSP was
used to show the synchronization within a number of con-
current processes. We showed the ability of LWM to continue
functioning with almost 95% of the miners acting maliciously
in the system. Further, we identified the average waiting time
that a victim client’s transactions take to be added to the
blockchain. We proved that targeting successively more vic-
tim clients has no impact on the average waiting time of ad-
dition of a block to the blockchain but the number of malicious
miners does in fact impact the waiting time. 

As future work, we note that the methodology described
here to evaluate the availability could be applicable to other
blockchain-based systems in which the consensus protocol
is probabilistic in nature. For such systems, our methodol-
ogy can be modified to show the reliability and robustness of
the system against attacks like those described in this paper.
For instance, we can apply this methodology to permission-
less blockchains such as Ethereum ( Wood et al., 2014 ). It is a
transaction-based state-machine ( Idelberger et al., 2016 ); the
system processes the next step based on the inputs it reads.
So, we need to show the synchronization within concurrent
messages in order to check for deadlock occurrences and/or
non-deterministic status. In the LWM protocol, the probability
that a good miner is selected is equal among good miners; in
Ethereum, the probability differs based on each miner’s stake
( Wood et al., 2014 ). The blockchain protocols Hyperledger Fab-
ric, Sawtooth Lake, Ripple ( Schwartz et al., 2014 ) are likely to be
amenable to our analysis as well. We will describe such anal-
yses in future communications. 
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