Security: Internet of Things Based on Trusted Flows

Kyle Haefner

Background - What is IoT Security?

"Security of the Internet of Things is just security at a larger scale"

-- Steve Lovaas Colorado State University IT Manager

This is not the whole picture...

- 1. Single purpose devices
 - a. Less complex to model
- 2. Effects of poor security implementations more profound.
 - a. Pacemaker stop you heart
 - b. Thermostat burn down your house

Background - IOT DDOS

• Mirai Botnet

- 1.1 Tbps peak attack
- 400,000 devices offered for rent
- 2.5 Million infected devices

• Repear

- 9 different exploits attacks
- Checkpoint security says it found the malware on 60% of networks it monitors.

• Hajime

- Whitehat vigilante botnet
- Blocks ports other botnets use as vectors
 - TCP/23 (telnet), TCP/7547, TCP/5555, TCP/5358
 - Signed message, "just a white hat, securing some systems."

DDOS

Top 10 IoT Vulnerabilities 2014

- 1. Insecure Web Interface
- 2. Insufficient Authentication/Authorization
- 3. Insecure Network Services
- 4. Lack of Transport Encryption/Integrity Verification
- 5. Privacy Concerns
- 6. Insecure Cloud Interface
- 7. Insecure Mobile Interface
- 8. Insufficient Security Configurability
- 9. Insecure Software/Firmware
- 10. Poor Physical Security

Open Web Application Security Project OWASP Internet of Things Project https://www.owasp.org

The IoT Security Triad

Access Control

Hardware
Software
Network

Hardwares

- Encryption
 - Elliptic Curve (Smaller Keys, lower power)
- Verifiable Firmware
 - Firmware must be signed
 - Running firmware must be verified.

Software

- Vulnerabilities on device
 - Insecure web interface
 - Buffer overflows
- Vulnerabilities in protocols
 - Unencrypted protocols
 - Protocol Vulnerabilities
- Vulnerabilities in provider's cloud
 - Weak Encryption
 - Weak Authentication

Network

- Fingerprinting of device
 - Clock Skew Every clock source is unique (unique != identity)
 - Identify a device based on scans (ports, TCP windows etc)
- Behavior of Device
 - \circ Network trends and patterns of a device on a network over time.
 - \circ Theory: It is more important defining what a device does on the network that what a device is.

Trusted Flows - Introduction

- Stage 1:
 - Learn device behavior on the network
 - Develop a trust model based on this behavior (and a few other attributes)
 - Leverage software defined networking to enforce trust model
- Stage 2:
 - Use behavior as a way to classify device type
 - Use semi-supervised machine learning to apply access controls to devices based on device type.

Trusted Flows - Network Flow RFC

<u>RFC 3697</u> defines traffic flow as "a sequence of packets sent from a particular source to a particular unicast, anycast, or multicast destination that the source desires to label as a flow."

Trusted Flows - Defining

- Tuple of 5 IP header features (ip_src,ip_dst,ip_protocol,src_port,dst_port)
- Flow statistics (number of packets, bytes, packets per second, bytes per second, duration)
- Direction (Packets A->B, Bytes A->B, bps A->B)

Example of Network Stats

🧲 Conversatio	ons: Ethernet									– 🗆 X
Ethernet: 3C	Fibre Channel FI	DDI IPv4: 31	1 IP∨6: 3	IPX JXTA NCP	RSVP SCTP	TCP: 1C Token R	ing UDP: 2C USB WLA	N		
								IPv4 Con	versations	
Address A 🖪	Address B 🖪	Packets 🖣 E	Bytes 🖣 🖡	Packets A→B ◀ By	rtes A→B ◀ P:	ackets A←B ◀ Bvte	s A←B ◀ Rel Start ◀ D	uration 4 b	ops A→B ◀ bps A←B	< ^
129.82.3.61	239.255.255.250	7	1 385	7	1 385	0	0 0.00000000	15.2063	728.64	N/A
129.82.3.53	129.82.52.11	664	1 249 825	258	1 218 831	406	30 994 0.075824000	29.2422	333444.61	8479.26
129.82.3.213	129.82.3.255	3	276	3	276	0	0 0.124854000	1.5011	1470.89	N/A
129.82.3.213	224.0.0.252	2	128	2	128	0	0 0.125359000	0.4172	2454.57	N/A
129.82.3.2	224.0.0.102	11	1 034	11	1 034	0	0 0.253477000	28.4035	291.23	N/A
129.82.3.52	129.82.3.63	5	1 170	5	1 1 7 0	0	0 0.875120000	8.7573	1068.82	N/A
129.82.3.3	224.0.0.102	10	940	10	940	0	0 2.283909000	25.0739	299.91	N/A
129.82.3.213	239.255.255.250	4	860	4	860	0	0 3.466888000	3.0013	2292.37	N/A
129.82.3.3	224.0.0.13	1	70	1	70	0	0 7.073001000	0.0000	N/A	N/A
129.82.3.2	224.0.0.1	1	60	1	60	0	0 13.060191000	0.0000	N/A	N/A
129.82.3.233	239.255.255.250	4	832	4	832	0	0 13.639861000	3.0020	2217.20	N/A
65.52.108.199	9 129.82.3.53	3	353	1	192	2	161 14.787870000	0.0751	N/A	17156.41
74.125.69.188	3 129.82.3.53	2	121	1	66	1	55 14.974728000	0.0124	N/A	N/A
0.0.0.0	255.255.255.255	1	342	1	342	0	0 15.313319000	0.0000	N/A	N/A
129.82.3.53	172.217.1.206	2	121	1	55	1	66 15.600655000	0.0026	N/A	N/A
40.97.166.34	129.82.3.53	2	151	1	97	1	54 15.968785000	0.0503	N/A	N/A
40.97.138.82	129.82.3.53	6	1 510	4	1 402	2	108 16.018826000	0.0003	38149659.86	2938775.51
129.82.3.52	224.0.0.251	1	60	1	60	0	0 17.218378000	0.0000	N/A	N/A
129.82.3.53	255.255.255.255	1	193	1	193	0	0 17.478668000	0.0000	N/A	N/A
129.82.3.53	129.82.3.63	1	193	1	193	0	0 17.479598000	0.0000	N/A	N/A
129.82.3.53	239.255.255.250	1	46	1	46	0	0 18.126964000	0.0000	N/A	N/A
129.82.3.2	224.0.0.13	1	70	1	70	0	0 19.105339000	0.0000	N/A	N/A 🎽

🗹 Name resolution 🛛 Limit to display filter <u>С</u>ору

Follow Stream Graph A→B

Close

<u>H</u>elp

Trusted Flows - Device Behavior

- <u>One-class SVM</u> is an unsupervised algorithm that learns a decision function for novelty detection:
 - RBF (Gaussian Kernel)
 - Classifies new data as similar or different to the training set.
 - Classifies new data as similar or different to the training set.
 - Training set will be previous *t-n* windows of recent history (data) plus the exponential decay history
 - Testing set will be *t-1* windows of data.

Trusted Flows - One-Class SVM

Online learning with exponential decay sampling.

$$S_{test} = \sum_{i=0}^{i=-t} i$$
$$S_{train} = \sum_{i=-t}^{i=-t-w} i + \sum_{i=-t-w-1}^{\infty} 2^{i}$$

Trusted Flows - Trust

- Trust score based on:
 - What we know about the device (K)
 - Binary Values
 - Certificate (valid) or (none/invalid) = [1,0] or [0,1]
 - Common Vulnerability Scoring System[5] (CVSS)
 - (CVSS = 0) = [1,0] or (CVSS > 0)
 = [0,1]
 - Shodan[6] presence (present) or (none) = [0,1] or [1,0]
 - Use of encryption
 - Past behavior of device (B)
 - How many outliers outside of boundary over time?
 - *m* is a factor to adjust the influence of outliers on the trust model.

$$= \begin{cases} \frac{\sum k_T}{mB}, & ifB \ge 1\\ \sum k_T, & otherwise \end{cases}$$
$$(mB\sum k_T, & ifB \ge 1 \end{cases}$$

$$= \begin{cases} mB \sum k_U, & ifB \ge 1\\ \sum k_U, & otherwise \end{cases}$$

$$F_T = [T, U]$$

 $F_T \ge F_U$ netflow is allowed otherwise netflow is denied

Questions