IoT - Secure Firmware Update

Kyle Haefner August 2018

Firmware

- Software that provides low level control over a device's hardware
- Stored in non-volatile memory
- For some devices constitutes:
 - Operating System
 - Network Stack
 - \circ Application
 - \circ Drivers

Firmware - Vintage

- Apollo Lunar Module Guidance Computer
 - Rope Core Memory
 - \circ 1's and 0's *literally hardwired*
 - \circ 72KB foot³!
 - Updatability: umm no...

Firmware - Today

- Commonly stored in EEPROM or Flash
- Hundreds of Gigabytes and growing
- Relatively simple to write/rewrite
- In everything
- Disaster waiting to happen

"Nothing is certain but death, taxes and...

...Vulnerable Software"

--Benjamin Franklin (if he were alive today)

Firmware is unique, once compromised can be impossible to fix.

Requirements for Secure Update

- Confidentiality
 - Firmware image is encrypted guards against reverse engineering
- Integrity
 - \circ $\;$ $\;$ Hash of firmware to make sure it has not been altered
- Access/Availability
 - Digitally signed by manufacturer
 - \circ Devices must be able to find and download firmware
 - This must scale to hundreds of millions of devices
 - Firmware should persist through
 - Mergers
 - Bankruptcies

Proposal

Blockchain!

...a decentralized, distributed and public digital ledger that is used to record transactions across many computers so that the record cannot be altered retroactively.

http://dilbert.com/strip/2018-06-06

Blockchain: Confidentiality

- No need for need for trusted third parties.
 - Blockchain is the PKI.
 - Devices must ship trusting the manufacturer's blockchain public key
 - Used to encrypt firmware image
 - Used to encrypt communications channel for downloading firmware

Blockchain: Integrity

- Each firmware update is hashed and signed in the blockchain
- Blockchain stores
 - Hash of each firmware version stored in blocks in blockchain.
 - \circ URL for each firmware version

Blockchain: Access/Availability

- Blockchain private key can sign firmware
- All transactions can be certified to a manufacturer
- High availability
- Access to firmware can outlive any single company

Advantages of Blockchain for Firmware

- A distributed ledger can provide transparency for each firmware lifecycle
- Firmware can be cryptographically transferred
- No single entity owns the blockchain
- No single entity needs to be trusted on the blockchain.

Proposal: OCF Firmware Blockchain Community

- Based on a *permissioned* blockchain network
- Members of OCF maintain one or more validation nodes in the blockchain firmware network
- Any node in the community can respond to firmware verification requests
- Firmware network is responsible for:
 - Performing consensus algorithm
 - \circ Maintains entire ledger of firmware transactions.
 - Executing smart contracts
- Firmware is stored outside of blockchain
 - Traditional Server -- Client Model
 - P2P network

Prototype Ledger

- Blockchain built using the Hyperledger Fabric framework
 - <u>https://www.hyperledger.org/</u>
 - Linux Foundation
 - \circ Created for the Enterprise
 - Open Source
 - \circ Permissioned only certain authenticated entities can update ledger
- Channels
 - Overlay on blockchain.
 - \circ $\;$ Allows for segmenting blockchain network and transactions
 - Only authorized entities can communicate on a channel
 - Each OCF Member gets one or more channels

Firmware Update Request

Unconstrained Devices

- Continuously connected
- Enough RAM and storage to handle firmware downloads
- CPU capable of asymmetric cryptographic functions
- Can act as a client on the blockchain
- Can download, decrypt and store firmware for constrained devices

NETGEA

Constrained Devices

- May not have continuous connection
- Battery operated
- Low RAM/Storage
- CPU designed for power efficiency
- Does not interact directly with blockchain

Wireless Sensor

Unconstrained Devices

- . Firmware Check
- Firmware Response (Hash+URL)
- Download Firmware
- . Validate Hash
- . Decrypt Firmware

Constrained Devices

Prototype: Unconstrained Devices

- Raspberry Pi prototype unconstrained device
 - Authorized to transact on a specific channel (eg. Samsung)
 - Uses chaincode applications/smart contract to interact with that channel
 - Advertises firmware capability to other IoTivity Devices

Prototype: Constrained Devices

- Talk to an unconstrained device on the network
- Communication and trust established at
 - On-boarding and
 - Exchange of symmetric keys

Links

Open Connect Foundation

 <u>https://www.oregoncf.org/</u>

2. Iotivity

- a. https://iotivity.org/
- 3. Hyperledger Fabric

a. <u>https://www.hyperledger.org/projects/fabric</u>

Questions

Thank You.

http://blog.dilbert.com/wp-content/uploads/2018/05/Blockchain-skills.png