Dr. Indrajit Ray, Dept. of Computer Science, Colorado State University. http://www.cs.colostate.edu/~indrajit

On Sybil Classification in Online Social Network Using Only OSN Structural Features

Dieudonne Mulamba, Indrajit Ray, Indrakshi Ray Computer Science Department

Colorado State University

Online Social Network

- Preferred way to connect peoples
- Open platform: Anyone can join
- Some users can be fake or malicious

 Sybils

Facebook 2,072m WhatsApp 1,300m Messenger 1,200m WeChat 980m Instagram 800m Qzone 568m Weibo 361m 330m Twitter 200m Pinterest Facebook Inc. 178m** Snapchat Tencent Inc. Others Vkontakte 95m * latest available data (Dec. 16 - Sep. 17) ** daily active users statista 🗸 Source: Company filings & announcements

Facebook Dominates the Social Media Landscape

Monthly active users of selected social networks and messaging services*

Fake accounts (Sybils)

Sybils are for sale on the underground market

Fake accounts (Sybils)

Why are sybils so harmful ?

Fake accounts can be used to :

- Send spam
- Do phishing

> ...

Access personal user info

Detecting Sybils is challenging

Detecting sybil accounts is difficult: These accounts may resemble real users

There are several approaches to detect sybils

- Content-based approaches
- Behavior-based approaches
- Graph-Structure based approaches

- Content-based approaches
 - Collect user's attributes (genre, age, mobility, power, ...)
 - Use machine-learning to classify users
- Behavior-based approaches
 - Collect user's activity data (like, posts, uploading image, ...)
 - Use machine-learning to classify users
- Graph-based approaches
 - Leverage the relationship between nodes

- Content-based approaches
- Problems :
 - High false positive and negative rates
 - Some profiles are too easy to mimick
 - Information can be found online

- Content-based approaches
- The Fix : Hybrid approaches
 - Add features from activity data (Behaviorbased approach)
 - Add features from the social graph (Graphbased appraoche)
 - Use machine-learning to classify accounts.

Hybrid approach : The workflow

What is wrong?

- Users do not always provide all the info requested in the profile
- Collecting user activities data raises the concern about user privacy

• New Direction :

- Design features ONLY from network topology
- Use machine-learning to classify accounts.

Dr. Indrajit Ray, Dept. of Computer Science, Colorado State University. http://www.cs.colostate.edu/~indrajit

Outline

- 1) Overview
- 2) Attack model
- 3) The Insights
- 4) Feature Engineering
 - Existing features
 - Proposed features
- 5) Feature selection
- 6) Dataset
- 7) Classification
- 8) Results
- 9) Conclusion

Our Work

- Avoid using features from user profiles, and user activity data
- Design features only from the topology of the social network
- Uses Machine-learning to detect Sybils
- Have evaluated results on many different types of synthetic datasets

- Varies in size, and graph properties

 Have evaluated results on a real world OSN data (Twitter)

Our Work: Overview

- Convert the social network into an undirected graph
- Use graph theory to engineer features
- Select relevant features through features selection
- Build classification models
- Evaluate the results

Our Work: Overview

• Our approach : The workflow

Our Work: Attack Model

- No assumption about attacker capabilities
- Attacker can create unlimited number of sybils
- Sybils may be connected to each other
- Attacker can befriend an unlimited number of benign nodes
- Attacker does not have control on the number of friend requests accepted

Our Work: The insight

• Features are engineered to capture the following patterns:

- Sybils that form a dense friendship subgraph
- Sybils that form a sparse friendship subgraph
- Sybils tend to have friendship relationship with popular users

Our Work: The Features

- Features are designed using graph theory (centrality metrics)
- Existing features are :
 - 1. Average degree
 - 2. Average nearest neighbor degree
 - 3. Core number
 - 4. Average core number
 - 5. Clustering coefficient
 - 6. Average clustering coefficient
 - 7. Edge volume
 - 8. Weighted vertex volume

Our Work: The Features

- Features are designed using graph theory (centrality metrics)
- Proposed features are :
 - 1. Degree-intensity centrality
 - 2. Degree-coherence centrality
 - 3. Core-intensity centrality
 - 4. Core-coherence centrality
 - 5. Weighted degree-core centrality
 - 6. Weighted degree-clustering centrality

Our Work: Features Selection

- The feature selection model is : The Recursive Feature Elimination (RFE)
- Selected features are :
 - 1. Core number
 - 2. Average degree centrality
 - 3. Average clustering centrality
 - 4. Degree-coherence centrality
 - 5. Core-coherence centrality
 - 6. Edge volume centrality
 - 7. Weighted degree-core centrality
 - 8. Weighted degree-degree centrality

Our Work: Dataset

Facebook dataset

- Benign region : Facebook dataset
- Sybil region : network synthetically generated

Region	Nodes	Edges
Benign	4,039	88,234
Sybils	4,000	88,000
Attack edges	None	60,000
Total	8,039	236,234

Our Work: Dataset

Twitter dataset

Real world dataset

Region	Nodes	Edges	
Benign	372,251	906,102	
Sybils	97,253	1,147,939	
Attack edges	None	99,385	
Total	469,504	2,153,426	

Our Work: Classification

• Classifiers:

- Adaboost (100 Estimators)
- K-Nearest Neighbor (KNN)
- Random Forest (100 trees)
- Evaluation metrics:
 - Precision
 - Recall
 - F-measure
 - Area Under the Curve (AUC)

Our Work: Results

Classification on Facebook dataset

Classifier	Precision	Recall	F-measure	AUC
Adaboost	1.00	1.00	1.00	1.00
KNN	1.00	1.00	1.00	1.00
Random Forest	1.00	1.00	1.00	1.00

Our Work: Results

Classification on Twitter dataset

Classifier	Precision	Recall	F-measure	AUC
Adaboost	0.95	0.94	0.94	0.94
KNN	0.99	0.99	0.99	0.99
Random Forest	0.99	0.99	0.99	0.99

Our Work: Results

- Our method is very accurate
- We want to check for over-fitting
- We plot the learning curve to check for over-fitting
- There is not over-fitting

Conclusion

- We proposed a practical Sybil detection mechanism
- We classify users according to the topology of the graph
- We classify sybils with high accuracy (AUC=0.99)
- Topological features are hard to evade
- Future works: Use a dynamic graph

Dr. Indrajit Ray, Dept. of Computer Science, Colorado State University. http://www.cs.colostate.edu/~indrajit

THANK YOU

