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Online Social Network
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Fake accounts (Sybils)

Sybils are for sale on the underground market
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Fake accounts (Sybils)

Why are sybils so harmful ?
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Detecting Sybils is challenging

Detecting sybil accounts is difficult:
These accounts may resemble real users
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EXisting approaches

There are several approaches to detect sybils

* Content-based approaches
* Behavior-based approaches
* Graph-Structure based approaches
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EXisting Approaches

* Content-based approaches
" Collect user’s attributes (genre, age, mobility, power, ...)
" Use machine-learning to classify users

* Behavior-based approaches
" Collect user’s activity data (like, posts, uploading image, ...)
" Use machine-learning to classify users

* Graph-based approaches
" Leverage the relationship between nodes
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EXisting Approaches

* Content-based approaches

® Problems :
" High false positive and negative rates
* Some profiles are too easy to mimick
" Information can be found online
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Existing Approaches

* Content-based approaches
® The Fix : Hybrid approaches

" Add features from activity data (Behavior-
based approach)

" Add features from the social graph (Graph-
based appraoche)

* Use machine-learning to classify accounts.
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Existing Approaches

* Hybrid approach : The workflow

Human
verifier

/'-;A

Lser p.r(.)ffles & Features Automated
activities * engineering classification Suspicious
(Machine learning) R
Graph TR
r Mitigation
topology

mechanisms

Sybil detection

10


http://www.cs.colostate.edu/~indrajit

Dr. Indrajit Ray, Dept. of Computer Science, Colorado State University. http://www.cs.colostate.edu/~indrajit

Existing Approaches

* What is wrong?

* Users do not always provide all the info
requested In the profile

" Collecting user activities data raises the concern
about user privacy

® New Direction :
" Design features ONLY from network topology
" Use machine-learning to classify accounts.
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Outline

1) Overview
2) Attack model
3) The Insights
4) Feature Engineering
» Existing features
» Proposed features
5) Feature selection
6) Dataset
7) Classification
8)
)
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Our Work

Avoid using features from user profiles, and user
activity data

Design features only from the topology of the social
network

Uses Machine-learning to detect Sybils

Have evaluated results on many different types of
synthetic datasets

— Varies in size, and graph properties

Have evaluated results on a real world OSN data
(Twitter)

s
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Our Work: Overview

Convert the social network into an undirected graph
Use graph theory to engineer features

Select relevant features through features selection
Build classification models

Evaluate the results

A7
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Our Work: Overview

* Our approach : The workflow
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Our Work: Attack Model

* No assumption about attacker capabilities

* Attacker can create unlimited number of sybils
* Sybils may be connected to each other

* Attacker can befriend an unlimited number of benign
nodes

* Attacker does not have control on the number of
friend requests accepted

40
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Our Work: The insight

* Features are engineered to capture the
following patterns:

B Sybi
B Syb

B Sybils tend to have friendship relationship with
popular users

s that form a dense friendship subgraph

s that form a sparse friendship subgraph
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Our Work: The Features

* Features are designed using graph theory (centrality
metrics)

* Existing features are :
1. Average degree
Average nearest neighbor degree
Core number
Average core number
Clustering coefficient
Average clustering coefficient

Edge volume

R LN T LG e 2 GO TR

Weighted vertex volume
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Our Work: The Features

* Features are designed using graph theory (centrality
metrics)

* Proposed features are :

1. Degree-intensity centrality
Degree-coherence centrality
Core-intensity centrality
Core-coherence centrality

Weighted degree-core centrality

RSN G oD

Weighted degree-clustering centrality
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Our Work: Features Selection

* The feature selection model is : The Recursive Feature
Elimination (RFE)
* Selected features are :
1. Core number
Average degree centrality
Average clustering centrality
Degree-coherence centrality
Core-coherence centrality
Edge volume centrality

Weighted degree-core centrality

O S« SR AT S e Gy

Weighted degree-degree centrality
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Our Work: Dataset

Facebook dataset

* Benign region : Facebook dataset
* Sybil region : network synthetically generated

Region Nodes Edges
Benign 4.039 88,234
Sybils 4,000 88,000
Attack edges None 60,000
Total 8,039 236,234
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Our Work: Dataset

Twitter dataset

Real world dataset

Region Nodes Edges
Benign 372,251 906,102
Sybils 97,253 1,147,939
Attack edges None 99,385
Total 469,504 2,153,426
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Our Work: Classification

* Classifiers:
- Adaboost (100 Estimators)
- K-Nearest Neighbor (KNN)

- Random Forest (100 trees)

 Evaluation metrics:
- Precision

- Recall

- F-measure
Area Under the Curve (AUC)
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Our Work: Results

* (Classification on Facebook dataset

Classifier Precision Recall F-measure AUC
Adaboost 1.00 1.00 1.00 1.00
KNN 1.00 1.00 1.00 1.00
Random 1.00 1.00 1.00 1.00
Forest
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Our Work: Results

* (Classification on Twitter dataset

Classifier Precision Recall F-measure AUC
Adaboost 0.95 0.94 0.94 0.94
KNN 0.99 0.99 0.99 0.99
Random 0.99 0.99 0.99 0.99
Forest

>
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Our Work: Results

* Our method is very accurate

* We want to check for over-fitting
* We plot the learning curve to check for over-fitting
* There is not over-fitting

Learning Curves (AdaBoost) Learning Curves (KNN)
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Conclusion

We proposed a practical Sybil detection
mechanism

We classify users according to the topology of the

graph

We classify sybils with high accuracy (AUC=0.99)
Topological features are hard to evade

Future works: Use a dynamic graph

27
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THANK YOU
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